Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bird’s eye views earth’s magnetic lines

14.05.2004


Nature article reports photoreceptors involved in sensing the earth’s magnetic field



Migratory birds, as well as many other animals, are able to sense the magnetic field of the earth, but how do they do it? "A fascinating possibility is that they may actually see the earth’s magnetic lines as patterns of color or light intensity superimposed on their visual surroundings," said John B. Phillips of Blacksburg, associate professor of biology at Virginia Tech. The results of more than two decades of research allow him to let such an image cross his mind.

A paper in the May 13 issue of Nature, "Resonance effects indicate a radical-pair mechanism for avian magnetic compass," reports evidence that the earth’s magnetic field is sensed by light-absorbing molecules in the retina of a bird’s’ eye.


Thorsten Ritz, a postdoctoral associate in the Phillips’ lab at Virginia Tech who is now a faculty member in the Department of Physics and Astronomy at the University of California, Irvine, co-authored the paper with Peter Thalau of the Zoologisches Institut, Fachbereich Biologie und Informatik, at J.W. Goethe University, Siesmayerstrasse, John Phillips of Virginia Tech, and Roswitha Wiltschko and Wolfgang Wiltschko, also of J.W. Goethe University.

Any effect of the earth’s magnetic field on a photoreceptor’s response to light is expected to be extraordinarily weak -- so weak in fact that the possibility of such effects have been largely ignored. But animals have developed specialized visual systems. "Some animals can see ultraviolet light. Some animals can see polarized light," Phillips said.

How animals’ nervous systems become adapted to detect different things is the subject of Phillips’ research. "As a biologist interested in specialized sensory systems, the question of whether photoreceptors have become specialized for detection of the earths’ magnetic field is a fascinating topic," he said.

Asking the question: "Are magnetic sensing and light sensing related?" Phillip’s lab has conducted research that has demonstrated that the magnetic "compass" sense involves a light-dependent mechanism in some animals. In earlier papers published in Nature, Phillips’ lab showed that changing the color of light altered directional information obtained from the magnetic compass in amphibians, and that the photoreceptors responsible were not located in the eyes, but in the pineal organ, or "third eye," located on top of the head.

For a photoreceptor to detect light, a molecule, referred to as a photopigment, has to absorb light, Phillips said. Light energy then starts a series of biochemical events that result in a change in the electrical charge across the cell membrane. This neural impulse can then be communicated to other cells in the nervous system.

Several theoretical models, including models proposed by lead author Thorsten Ritz and his Ph.D. advisor Klaus Schulten at the University of Illinois at Urbana-Champaign, have suggested ways in which the magnetic field can interact with a photopigment to divert energy and make the photoreceptor more or less responsive to light, Phillips said. These changes in the response to light may depend on the alignment of the earth’s magnetic field relative to the photopigment molecules in the eye, producing a "visual" pattern that could be used to obtain directional ("compass") information from the magnetic field, he said.

Although the earlier studies by Phillips’ lab and others indicated that birds and amphibians’ magnetic compass involves a light-dependent magnetic detector, these findings did not provide convincing evidence that the magnetic field was having a direct effect on the energy states of the photopigment molecules, as suggested in the models by Ritz and Schulten. An alternative suggested by other investigators is that the magnetic field might affect particles of the mineral magnetite, synthesized by living systems, which act like miniature compass needles.

The new experiments reported in the May 13 issue of Nature took advantage of the fact that migratory birds held in "orientation cages" during their normal seasonal migrations use the magnetic field as a source of compass information to hop in the appropriate migratory direction. To distinguish between the photoreceptor and magnetite mechanisms, European robins orienting to the north during the Spring migration were exposed to low-level radio frequencies predicted to disrupt the energy states of any light-absorbing molecules involved in sensing the magnetic field. In the presence of the radio frequency fields, the robins were unable to orient with respect to the magnetic field. This effect was also shown to depend on the alignment of the radio frequency field relative to the earth’s magnetic field, a further prediction of Ritz and Schulten’s model. Alternative mechanisms that involve the alignment of magnetite particles, rather than changes in the energy states of molecules within these particles, would not be affected by the low-level radio frequency fields used in these experiments.

"This is the first data to show that an effect of the magnetic field on energy states of a molecule is the basis of the magnetic compass," Phillips said. "The importance of this finding extends beyond this field of research, because it suggests that interactions much weaker than any thought to be possible in living systems are playing an important role in the behavior of these animals".

Virginia Tech researchers are currently carrying out related experiments to characterize the biophysical basis of the magnetic compass in insects, amphibians, and mice.


About Virginia Tech: Founded in 1872 as a land-grant college, Virginia Tech has grown to become the largest university in the Commonwealth of Virginia. Today, Virginia Tech’s eight colleges are dedicated to putting knowledge to work through teaching, research, and outreach activities and to fulfilling its vision to be among the top 30 research universities in the nation. At its 2,600-acre main campus located in Blacksburg and other campus centers in Northern Virginia, Hampton Roads, Richmond, and Roanoke, Virginia Tech enrolls more than 28,000 full- and part-time undergraduate and graduate students from all 50 states and more than 100 countries in 170 academic degree programs.

Contact Dr. Phillips at jphillip@vt.edu.

Susan Trulove | EurekAlert!
Further information:
http://www.biol.vt.edu/faculty/phillips/
http://today.uci.edu/news/release_detail.asp?key=1151

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>