Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two molecules work together to aid transport of immune cells, UT Southwestern researchers find

21.04.2004


New research findings about T-cell transport shed light on how the normal immune system functions and could have implications in fighting autoimmune and inflammatory diseases, say researchers at UT Southwestern Medical Center at Dallas.



Two molecules on the surfaces of T-cells – a type of immune cell – must work in tandem to help the T-cells cross from the bloodstream into infected tissues, where the T-cells initiate an immune or inflammatory response, researchers at UT Southwestern have discovered.

The research, which was done in mice, appears in the April 21 issue of the journal Immunity.


In order to fight certain infections, T-cells must migrate from the bloodstream and into infected tissue. T-cells also cross blood vessel walls to initiate inflammatory or autoimmune responses in diseases such as rheumatoid arthritis, type 1 diabetes, lupus, asthma, Crohn’s disease and colitis.

Scientists know that two specific molecules, or receptors, on passing T-cells in the bloodstream interact with receptors on the walls of blood vessels. One T-cell receptor, called CD44, is responsible for getting the T-cells to "roll" along the blood vessel wall.

"CD44 governs the rolling behavior of the T-cell, where it touches and then lifts off the vascular wall," said Dr. Mark Siegelman, associate professor of pathology at UT Southwestern and senior author of the study.

A second receptor, VLA-4, stops the T-cells from rolling. This step in the process is called firm adhesion.

"You need both of these steps in order to get the T-cells out of the blood vessel and into tissue," Dr. Siegelman said. "Only by completing the second step, firm adhesion, has the T-cell committed to sticking and getting out."

In the new research, UT Southwestern scientists found that in order to get the T-cells to stick firmly to the vascular wall, the CD44 and VLA-4 receptors on the T-cell had to be physically linked. If they do not form what’s called a bimolecular complex, firm adhesion does not occur.

"Our findings define a relationship between CD44 and VLA-4 that results in a cooperative system," Dr. Siegelman said. "If they aren’t linked, the T-cells exhibit rolling behavior, but not firm adhesion, and, therefore, they don’t move through the blood vessel wall to initiate immune or inflammatory responses."

The researchers also found that if part of the CD44 receptor is missing, the bimolecular complex does not form, inhibiting the T-cells from moving out of the bloodstream.

The research results may aid in future development of treatments for rheumatoid arthritis, for example, a condition in which T-cells travel from the bloodstream and into the space between joints, causing painful inflammation.

"One strategy for drug development might be to target CD44 or this bimolecular complex in order to prevent T-cells from getting in there and starting an inflammatory response," Dr. Siegelman said.

Other UT Southwestern researchers involved with the study are Dr. Animesh Nandi, research scientist in biochemistry, and Dr. Pila Estess, assistant professor of pathology.


The research was funded in part by the National Institutes of Health and the Burroughs Wellcome Fund.

Amanda Siegfried | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht 3D technology lets us look into the distant past
20.05.2019 | Eberhard Karls Universität Tübingen

nachricht Dangerous pathogens use this sophisticated machinery to infect hosts
20.05.2019 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>