Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioreactor boosts chemical fermentation by 50 percent: study

30.03.2004


A device invented at Ohio State University has dramatically boosted the production of a chemical that performs tasks as diverse as scenting perfume and flavoring Swiss cheese.


Shang-Tian Yang



Engineers here have used their patented fibrous-bed bioreactor to genetically alter a bacterium so that it produces 50 percent more of the chemical propionic acid than the organism produces normally. And it did so without the aid of chemical additives employed in industry.

The device also reduced the amount of two unwanted byproducts that normally result from propionic acid fermentation -- cutting one byproduct by more than half, said Shang-Tian Yang, professor of chemical engineering at Ohio State.


The bioreactor grows cells inside a bundle of fibers. Yang and his colleagues have previously shown that they could control the growth and differentiation of cells by changing the packing density of the fibers in the bioreactor.

Monday at the national meeting of the American Chemical Society in Anaheim, Yang and doctoral student Supaporn Suwannakham reported that they were able to produce 72 grams of propionic acid per liter of sugar solution inside the bioreactor. Traditional fermentation typically yields only 50 grams per liter or less, making the new process 44 percent more effective.

More important to Yang is the fact that he and his team were able to coax the bacterium P. acidipropionici to make more acid without adding chemicals to the mix. They simply immobilized the cells on the fibers so the cells could grow and evolve -- or mutate -- in a harsh environment.

“Most labs focus on mixing the right chemical or biological cocktail to grow cells,” he said. “We are the only group that I know of that is working to optimize the cells’ physical environment.”

The bioreactor can grow cells for a variety of applications including fermentation, animal cell culture, tissue engineering, and waste water treatment. Since 1998, Yang and his colleagues have used the device to make large quantities of a protein -- Developmental Endothelial Locus-1 Protein -- for cancer research. A commercial company recently licensed the technology for agricultural applications.

Yang designed the bioreactor as a three-dimensional alternative to the flat petri dishes and trays that scientists traditionally use to culture cells. The fibers anchor living cells in place as they grow and reproduce.

For this latest study, the engineers grew P. acidipropionici in a sugar solution, and gradually adjusted the sugar concentration so the cells would tolerate -- and produce -- higher concentrations of propionic acid. Tests yielded an average of 72 grams of the acid per liter. The bioreactor also produced 52 percent less succinate and 14 percent less acetate -- two chemicals that industry normally has to remove from the fermentation mix before the propionic acid can be used.

When Yang and Suwannakham examined the cells from the bioreactor, they found that the cells had mutated and changed several key enzyme activities. Production of enzymes for propionic acid formation had increased, and the enzyme for succinate production had decreased.

Aside from giving Swiss cheese its characteristic smell and flavor, propionic acid is often used as a preservative and flavor enhancer for a wide variety of cheeses and baked goods.

In the chemical industries, it’s used as an ingredient for dyes, perfumes, pharmaceuticals, herbicides, rubber, and plastic.

With today’s growing emphasis on organic or “all-natural” products, Yang sees a market for propionic acid made without chemical additives in the bioreactor. “A company could conceivably market a product as being made with ‘all-natural’ propionic acid,” he said.



Contact: Shang-Tian Yang, (614) 292-6611; Yang.15@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://researchnews.osu.edu/archive/propacid.htm

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>