Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover gene mutations that ’ignore’ stress, lead to heart failure

30.03.2004


Mayo Clinic researchers have discovered genetic mutations in heart patients that make them vulnerable to heart failure because they produce an abnormal protein that can’t decode stress messages from the body.



Mayo researchers are the first to realize that these proteins do not recognize the stress alarm. As a result, they can’t properly respond to cue adjustments within the heart that normally manage stress. These defects make the heart muscle susceptible to damage. The Mayo Clinic research team’s report appears in the journal Nature Genetics, v. 36; no. 4, April 2004 (www.nature.com).

Research team leader Andre Terzic, M.D., Ph.D., a specialist in cardiac biology, describes the work as groundbreaking because it reveals critical molecular mechanisms which may in turn point to possible new treatments for heart failure. "Very little is known about stress tolerance of the heart in health and disease," says Dr. Terzic. "This discovery opens a new field of investigation in cardiovascular medicine as we uncover how and why the heart becomes vulnerable to stress."


In addition to collaborating with other researchers from Mayo Clinic, Dr. Terzic’s team drew upon the expertise of the University of Minnesota Supercomputing Center to help model the shape of the protein under investigation.

Significance of the Findings

The significance of the Mayo Clinic findings is threefold. It: 1) for the first time, views heart failure as a communication or signaling problem in the stress-management system of heart cells, 2) tests the idea in human beings, and 3) offers convincing evidence that miscommunication of stress signals distresses the heart and plays a role in susceptibility to heart failure.

This work differs from most research into genetic causes of heart failure which has identified defects in proteins involved in the mechanics of cardiac pumping, not in the communication pathways of stress-management systems.

The Investigation

The current investigation involves Mayo Clinic patients who suffer from a severe heart disease known as "idiopathic dilated cardiomyopathy," which leaves the heart highly vulnerable to failure under stress. The cause is unknown, but the usual heart disease risk factors physicians look for -- high blood pressure, elevated cholesterol, smoking, obesity -- are not necessarily present. To the researchers, this suggested problems in this patient group that had been missed by the standard screening for heart disease: defects in the heart’s stress management system.

Looking for Clues in Heart Patients’ DNA

To get data from patients, Dr. Terzic’s team collaborated with Timothy Olson, M.D., who directs the Mayo Clinic Cardiovascular Genetics Laboratory. Dr. Olson is a leader in identifying hereditary factors that cause heart disease. With the permission of selected patients who suffered heart failure of unknown origin, he carried out extensive genetic scans of DNA obtained from blood samples. Results showed that some patients shared a defect in a gene that makes a stress-reaction-type protein.

Says Dr. Olson: "By introducing a conceptually new mechanism for heart failure, our work points out how molecular genetics can provide a very powerful tool to diagnose a defect in a specific protein in a human disease." Several genes contribute to the heart’s ability to adapt to stress. Mayo will be conducting further genomics and proteomics studies to help understand their role in heart failure and enable improved treatment.

After finding mutations, researchers reproduced the mutations in the laboratory using recombinant genetic techniques that allowed them to observe the molecular consequences of the mutations. They found that the mutations create an abnormality within vital structures of heart cells known as the ATP-sensitive potassium channel.

Potassium Channel at a Glance

In healthy people, the potassium channel synchronizes the proper balance of potassium and calcium flow in the heart. Calcium is needed for the heart’s contractions. A proper level of potassium enables the cells to restore electrical balance following each heartbeat, and limits the entrance of calcium into the cells. Too much calcium damages cell structure and leads to heart failure.

The new finding shows ATP-sensitive potassium channels can work as defensive barriers, and if they are defective they cannot properly sense the body’s state of stress. When this happens, they fail to decode the metabolic signals that synchronize the flow of potassium and calcium.

Implications of Research

In principle, researchers can apply these findings to other patients with heart failure and look for other stress-reactive proteins that miscommunicate vital electrical or mechanical responses. Dr. Terzic says the ultimate goal is to design better therapies for managing heart disease.


Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O’Cochlain F, Gao F, Karger AB, Ballew JD, Hodgson DM, Zingman LV, Pang YP, Alekseev AE, Terzic A. (2004) ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic K(ATP) channel gating. Nature Genetics 36 (4) (April) (advance publication on line).

Bob Nellis | PNNL
Further information:
http://www.mayo.edu/

More articles from Life Sciences:

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

Electron beam strengthens recyclable nanocomposite

17.06.2019 | Materials Sciences

Tiny probe that senses deep in the lung set to shed light on disease

17.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>