Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fetal lungs provide a signal initiating labor, UT Southwestern researchers find

23.03.2004


A protein released from the lungs of a developing mouse fetus initiates a cascade of chemical events leading to the mother’s initiation of labor, researchers at UT Southwestern Medical Center at Dallas have found.


From left, Dr. Carole Mendelson, Dr. Jennifer Condon and Dr. Pancharatnam Jeyasuria have found evidence that a substance secreted by the lungs of a developing fetus contains the key signal that initiates labor.



The research, which has implications for humans, marks the first time a link between a specific fetal lung protein and labor has been identified, said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology and senior author of the study. The paper appears in an upcoming issue of the Proceedings of the National Academy of Sciences and is currently available online.

The initiation of term labor is carefully timed to begin only after the embryo is sufficiently mature to survive outside the womb. Previous studies suggested that the signal for labor in humans may arise from the fetus, but the nature of the signal and actual mechanism was unclear, Dr. Mendelson said.


In their study, UT Southwestern researchers found evidence that a substance secreted by the lungs of a developing fetus contains the key signal that initiates labor. The substance, called surfactant, is essential for normal breathing outside the womb.

"We found that a protein within lung surfactant serves as a hormone of labor that signals to the mother’s uterus when the fetal lungs are sufficiently mature to withstand the critical transition to air breathing," Dr. Mendelson said.

"No one really understands what causes normal or preterm labor. There may be several chemical pathways that lead to labor, but we think that this surfactant protein, which is also produced by the fetal lung in humans, may be the first hormonal signal for labor," said Dr. Mendelson, who is co-director of the North Texas March of Dimes Birth Defects Center at UT Southwestern.

In humans the signaling protein, called surfactant protein A, or SP-A, also helps immune cells, called macrophages, fight off infections in the lungs of children and adults by gobbling up bacteria, viruses and fungi that infiltrate the lung airway.

"Women who go into preterm labor frequently have an infection of the membranes that surround the fetus, and the number of macrophages in the wall of the uterus increases with the initiation of preterm labor. When women go into labor at term, they also have an increase in macrophages in the uterus," Dr. Mendelson said.

This led the researchers to investigate whether there was a connection between what happens during normal labor at term and in infected mothers who go into early labor.

"This also raised the question: If bacterial infection can cause increased macrophage infiltration of the uterus in preterm labor, what is the signal for the enhanced macrophage migration to the uterus at term?" Dr. Mendelson said.

In mice, the developing fetal lung starts producing SP-A at 17 days gestation; full-term delivery occurs at 19 days. The developing human fetus starts producing SP-A in increasing amounts after 30 to 32 weeks of a 40-week normal gestation, at which time the baby’s lungs are essentially developed. As the fetus "breathes" amniotic fluid in the womb, the protein is released into the fluid.

"The SP-A protein binds to macrophages in the amniotic fluid, macrophages that come from the fetus itself," said Dr. Jennifer Condon, a postdoctoral researcher in biochemistry and the study’s lead author.

The macrophages, "activated" by the protein, make their way through the amniotic fluid to the wall of the uterus. Once embedded there, they produce a chemical that stimulates an inflammatory response in the uterus, ultimately leading to labor.

The researchers also found that injecting a pregnant mouse with SP-A before day 17 of the pregnancy caused the mouse to deliver early. Injection of pregnant mice with an antibody that blocks SP-A function caused them to deliver late.

Identifying the receptors on the macrophages to which the SP-A protein binds will be the next step, Dr. Mendelson said.

"We think that bacteria may be binding to the same receptor on the macrophages to cause preterm labor in women. The bacteria mimic the function of SP-A, initiating the chemical reactions that lead to premature labor. If we knew more about this receptor on amniotic fluid macrophages, we may be able to design therapies or inhibitors to block preterm labor," she said.


###
Other researchers participating in the study were Dr. Pancharatnam Jeyasuria, a research fellow in internal medicine and former fellow Julie Faust, now a medical student at Texas A&M University.

The research was funded in part by the National Institutes of Health and the Texas Higher Education Coordinating Board.

Amanda Siegfried | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>