Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dioxin-receptor network identified

16.03.2004


A cell responds to pollutants - such as dioxin - via intricate and complex biochemical pathways beginning with the interaction of the pollutant molecule with a cell surface receptor. Christopher Bradfield and colleagues used yeast as a model system to elucidate the steps involved in the pathway that regulates vertebrate cell response to dioxin, the aryl hydrocarbon receptor (AHR) signal transduction pathway. To assess the molecules and pathways involved in the AHR pathway, the research group studied 4507 yeast "deletion" strains, each strain missing one gene from its genome. In this way Bradfield and colleagues identified 54 genes that had a significant influence on AHR response. Only two of these genes, termed modifiers, had been previously identified.



Though yeast does not naturally possess AHR, it is an ideal genetic model due to its small, well-characterized genome and similarity to vertebrate systems. Because yeast have been so well studied, the researchers were able to construct a "protein interaction network," (PIN) based on previously known interactions between the proteins encoded by the 54 modifier genes. The resulting map revealed groups of highly connected, related modifiers. The authors show that these modifiers group into five discrete biochemical steps in the pathway of dioxin signaling. Not only did they succeed in identifying potentially new genes involved in the signaling pathway but they were able to identify one of the modules as a previously undescribed nuclear step in the signaling pathway.


Citation: Yao G, Craven M, Drinkwater N, Bradfield CA (2004) Interaction Networks in Yeast Define and Enumerate the Signaling Steps of the Vertebrate Aryl Hydrocarbon Receptor. PLoS Biol: e65 DOI: 10.1371/journal.pbio.0020065



Christopher Bradfield | EurekAlert!
Further information:
http://www.publiclibraryofscience.org/
http://www.plosbiology.org/plosonline/?request=get-document&doi=10.1371/journal.pbio.0020065

More articles from Life Sciences:

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht New Therapy Promotes Vascular Repair Following Stroke
25.06.2019 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

Robocabs: The mobility of the future?

25.06.2019 | Studies and Analyses

Skipping Meat on Occasion May Protect Against Type 2 Diabetes

25.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>