Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry puts new sparkle in diamonds

11.02.2004


Diamonds are getting bigger, more colorful and cheaper, thanks to chemistry. A favorite gem at Valentine’s Day is getting a makeover with synthetic diamond making processes, according to the Feb. 2 issue of Chemical & Engineering News, the weekly newsmagazine of the American Chemical Society, the world’s largest scientific society.


The diamond-making business has been around for years and although synthetic diamonds had many important uses, including saw blades, drill bits and exfoliants, they were tiny and not gem quality. Only recently has chemistry been able to grow large, gem quality stones at approximately one-third the price of mined diamonds, says C&EN.

Companies such as Gemesis in Florida and Apollo Diamond in Boston are now creating lab-grown diamonds that can be produced to more than a carat in size and are virtually indistinguishable from their mined counterparts, says the newsmagazine. They are chemically and physically true diamonds.

Synthetic diamond-makers start with a tiny diamond "seed" around which the new diamond grows. But that’s not chemistry’s only role in the diamond market. Even natural diamonds can be changed with chemistry, says the newsmagazine.



Colored diamonds, which are valuable and very rare, can be created by introducing carefully controlled elemental "impurities" into the stone, says C&EN. For instance, nitrogen produces a yellow stone. Infusing boron into the growing diamond produces a blue gem.

Allison Byrum | EurekAlert!
Further information:
http://pubs.acs.org/cen/coverstory/8205/8205diamonds.html

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>