Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winter weather turns on flowering gene

08.01.2004


In four months, when flower buds spring up from the ground, you may wonder how plants know it’s time to bloom. This question has baffled plant biologists for years. Now, scientists at the University of Wisconsin-Madison have an answer: a gene that functions as an alarm clock to rouse certain plants from a vegetative state in the winter to a flowering state in the spring.

According to the researchers, the findings, published in the Jan. 8 issue of the journal Nature, could lead to new methods for manipulating the productivity of crop plants, as well as a better understanding of how organisms control the fate of their cells.

Most people may not know that some of our favorite salad ingredients - carrots, cabbage, radishes, beets and parsley - take two seasons to flower and produce seeds because we harvest them before they have the chance to flower. These plants, called biennials, require a season of cold to flower.



"We’ve known that winter does something to the plant’s growing tip, or meristem, and makes it competent to flower," says Richard Amasino, a UW-Madison biochemistry professor and senior author of the paper. "If biennials don’t go through winter, they won’t flower." But why, he adds, has remained a mystery.

This mystery started to unravel in 1999, when Amasino and his colleagues identified two genes central to the flowering of Arabidopsis thaliana, a small, flowering plant that’s a member of the mustard family. The genes work together to block blossoming. As they observed, one of these genes is no longer expressed in the spring, when the plants can flower and complete their life cycle.

How winter switches off this flower-inhibiting gene in the second growing season, says Amasino, was the next obvious question. So, the Wisconsin scientist and UW-Madison biochemistry graduate student Sibung Sung looked to a biennial variety of Arabadopsis, a plant that’s widely used as a model organism in plant biology and genetics. They screened for mutants that wouldn’t bud after surviving temperatures just above freezing, and they found three - all lacking a gene now called VIN3.

After further investigation, the researchers learned that an extended period of cooler temperatures prompts the VIN3 gene to turn on. Once activated, the gene starts the process of vernalization, whereby the plant becomes competent to flower after exposure to cold. As this process begins, the expression of the flower-suppressing gene identified in 1999 wanes until it is completely blocked.

The researchers report that the VIN3 gene is expressed only after plants have been exposed to conditions effective for vernalization, suggesting that the VIN3 gene functions as an alarm clock rousing biennial plants to bloom.

But how do plants know they’ve been exposed to the right temperature for the right amount of time? "This is an intriguing question," says Sung. "Without a nervous system, plants must have a mechanism by which they can remember they have been through the winter season." Although plants don’t have a brain like humans do, they do have cellular machinery that appears to remember cold exposure, according to the new research.

The Wisconsin scientists show that the expression of VIN3, which occurs after exposure to cold, initiates a series of changes in one of the flower-suppressing genes. Specifically, VIN3 activation permanently modifies the structure of histones, a group of proteins over which DNA is wrapped. These changes block the flower-suppressing gene, switching the plant from a fixed state where it won’t flower to a fixed state where it can flower.

Scientists speculate that changes in histone structure play a major role in the development of higher organisms and the formation of cancer cells. Says Sung, "Histone changes in model plants could give us the opportunity to extend our understanding of how organisms control their cell fates during development."

The findings by Amasino and Sung also could lead to improvements in agriculture.

"This new molecular understanding could provide information to help design tools to manipulate flowering," the biochemistry professor says. For example, agronomists could engineer biennial crops that lack VIN3 and never flower, potentially increasing yield. But as Amasino clarifies, he’s in the business of basic science - it’s up to others to use the information.

Further Contact: Sibum Sung, 608-262-4640, sbsung@biochem.wisc.edu

Richard Amasino | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>