Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find new form of hormone that helps songbirds reproduce

18.11.2003


Scientists have known for many years that auditory cues such as song can influence hormone release and the growth of gonads in songbirds, but how the brain picks out specific sounds, interprets them correctly and translates them into hormonal and behavioral signals has remained a mystery. New evidence suggests a third form of a key reproduction hormone could be a link between song and enhanced procreation in songbirds.



It’s a long-held tenet of avian biology that songbirds have just two types of a key reproduction hormone, gonadotropin-releasing hormone (GnRH), and only one actually triggers a seasonal "puberty" each spring in preparation for reproduction. But the new research shows a third form of the hormone, called lamprey GnRH-III-like hormone because it was first identified in lampreys, is also present in songbird brains.

The work by scientists from the University of Washington and the University of New Hampshire shows GnRH-III can trigger the release of luteinizing hormone from the pituitary gland and influence gonad growth, something only one of the other forms of GnRH does under normal conditions.


"This is interesting because many birds breed seasonally, and they time their breeding for favorable conditions in the spring," said George Bentley, a UW post-doctoral researcher in biology.

Bentley is lead author on a paper detailing the work that will be published in the December-January edition of the journal Brain, Behavior and Evolution. Co-authors are John Wingfield, a UW biology professor; Ignacio Moore, a UW post-doctoral researcher in biology; and Stacia Sower, a professor of biochemistry and molecular biology at the University of New Hampshire. The research also was presented earlier this month at the Society for Neuroscience annual meeting in New Orleans.

Like one other form of the hormone, GnRH-III is found in the hypothalamus, where it is released to the pituitary gland, which then triggers changes in the reproductive system, Bentley said. But unlike the other forms of the hormone, GnRH-III also is found in parts of the brain that initiate and process auditory cues.

"In some species, if a female bird hears a male of the species sing, her ovaries grow faster and she will lay more eggs," Bentley said.

In addition, tape-recorded songs from a male can trigger a rapid increase in testosterone of another male defending his territory, a phenomenon Wingfield has studied for many years.

In either case, the brain detects an external cue – birdsong – that triggers a physical or behavioral response, possibly both. Just how the responses are transmitted through the nervous system is unknown, Wingfield said. But finding a third form of GnRH in areas of the brain that produce and process birdsong holds the potential for ultimately identifying how cues such as song can be directly translated into hormone output that affects reproduction.

It could be the first step in showing that the hormone is released directly into the bloodstream from the song centers of the brain, rather than going through the hypothalamus, Wingfield said.

"We’ve never had a link like this for the GnRH-type molecule in these brain areas that produce and process birdsong," he said. "The fact that it’s there is unique to higher vertebrates."

The researchers note the importance environment can play in reproductive responses. For instance, previous studies have shown testosterone levels in the saliva of sports fans increases when their teams win, and it decreases when their teams lose. Likewise, the widely recognized home-field advantage in sports has recently been correlated to a higher salivary testosterone level in home-team players than in visitors.

But at a time when people are increasingly concerned about environmental changes, the researchers say, there is still very little information about how organisms respond to changes in various triggers – temperature change, for example – in their environments. The scientists plan further research with GnRH-III to try to determine how the brain interprets seemingly fleeting and subtle environmental cues such as temperature fluctuation, rivalry and vocalization. The response to these cues can have a profound impact on reproduction success, Bentley said.


For more information, contact Bentley at 206-543-7623 or gb7@u.washington.edu, or Wingfield at 206-543-7622 or jwingfie@u.washington.edu.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Life Sciences:

nachricht Scientists first to develop rapid cell division in marine sponges
21.11.2019 | Florida Atlantic University

nachricht CUHK Faculty of Engineering develops novel imaging approach
21.11.2019 | The Chinese University of Hong Kong

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>