Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression tied to social behavior in honey bees

10.10.2003


Genes and behavior go together in honey bees so strongly that an individual bee’s occupation can be predicted by knowing a profile of its gene expression in the brain, say researchers at the University of Illinois at Urbana-Champaign.



This strong relationship surfaced in a complex molecular study of 6,878 different genes replicated with 72 cDNA microarrays that captured the essence of brain gene activity within the natural world of the honey bee (Apis mellifera). Even though most of the differences in gene expression were small, the changes were observable in 40 percent of the genes studied, the scientists report in the Oct. 10 issue of the journal Science.

"We have discovered a clear molecular signature in the bee brain that is robustly associated with behavior," said principal researcher Gene E. Robinson, a professor of entomology and director of the Neuroscience Program at Illinois. "This provides a striking picture of the genome as a dynamic entity, more actively involved in modulating behavior in the adult brain than we previously thought."


Microarrays let researchers get a broad view of gene activity by generating simultaneous measurements of messenger RNA, which reflect levels of protein activity. The mRNA binds to specific sites on the array, allowing for the measurement of expression from thousands of genes.

Robinson, who also holds the G. William Arends Professorship in Integrative Biology at Illinois, and colleagues generated mRNA profiles from 60 different bees who were working either as nurses (taking care of the brood within the hive) or foragers (gathering food outside). A computer program was able to use the profiles to determine correctly, for 57 of 60 the bees, which individual belonged to what group.

Behavioral differences between nurses and foragers are part of an age-related, socially regulated division of bee labor. Nurses perform care-giving duties for their first two to three weeks of life, then shift to foraging for nectar and pollen. As the behavioral transition occurs the bees experience changes in brain structure, brain chemistry, and, as this new study shows, many changes in gene expression.

Robinson, whose research is part of a federally funded project to sequence the honey bee genome, has long been interested in the mechanisms involved in honey bee division of labor as a model to understand the relationships between genes, brain and behavior.

After an initial analysis showed differences between nurses and foragers, the researchers faced the problem of relating these differences to either age or behavior, because foragers are both behaviorally different and older than nurses. So Robinson and colleagues created colonies consisting entirely of same-aged bees. In the absence of older bees, some individuals in a hive will begin foraging up to two weeks earlier than usual while others will grow up normally and act as nurses, making for age-matched young nurses and foragers. Age-matched old foragers and old nurses also were obtained from these colonies.

A dominant pattern of gene expression emerged, and it "was clearly associated with behavior," the researchers wrote. Since precocious foraging is a response to the shortage of foragers, this finding indicates that the genome is responding dynamically to changes in the bee’s social environment, Robinson said.

The study was unique, he said, because it focused on individual profiles. Previous studies of gene expression and behavior in mice and flies, for instance, have focused on group tendencies, looking at pools of individuals.

Robinson’s colleagues on the paper were Charles W. Whitfield, a postdoctoral researcher in the department of entomology, and undergraduate Anne-Marie Cziko.


The research was funded by a National Science Foundation Postdoctoral Fellowship in Bioinformatics to Whitfield and by grants from the University of Illinois Critical Research Initiatives Program and Burroughs Wellcome Trust.

Jim Barlow | UIUC
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>