Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering what genes do the high-throughput way

01.10.2003

Researchers at the Howard Hughes Medical Institute in Boston have developed a fast and systematic method that could make it easier to understand how cells from complex animals work. Their results, published this week in Journal of Biology, should inspire scientists to perform comprehensive screens of the fruit fly genome to find molecules that control a variety of cellular processes.

The research team, led by Norbert Perrimon, systematically inhibited the function of around 1,000 Drosophila genes that are predicted to affect diverse cellular processes. They observed that 16% of the inhibited genes altered the form or structure of the cells in some way.

Genes that caused the same changes in the cells when inhibited are likely to work together in a complex or pathway. Clustering genes by their effects allowed the researchers to assign functions to about 50 previously uncharacterised genes. Author Buzz Baum says, "The most exciting thing for me is that now you can take a step back and look at the bigger picture. You can find out which genes act together to do something, so you begin to build up a system-wide understanding of how cells work. Genes work in a community to do something, not on their own. With big-scale experiments you can start to see the internal logic of the cell."

The screening method makes use of RNA interference (RNAi) - introducing double stranded RNA into cells, to interfere with the expression of specific genes. In order to scale up the procedure, which normally tests one gene at a time, the researchers plated out cells into 384-well dishes and then added double stranded RNA to each well. After three days, when the targeted gene should be inhibited, they stained the cells so that they could visualise both DNA and components of the cytoskeleton. They then photographed the cells using an automated microscope.

Two postdoctoral researchers, Baum and Amy Kiger, independently studied the thousands of photographs generated by the screen to characterize the effects of the RNAi treatment on the cells. They created a formal set of criteria to judge the cells consisting of seven classes of change that could have been induced. These included changes to cell number, shape, size and viability. Any changes were only considered significant if both scientists recorded them in replica experiments.

The researchers were also keen to find out if their method could be used to screen for genes that worked in, or inhibited specific molecular pathways. Screens in whole flies for genes that modify the effect of a particular genetic mutation have proved powerful, though time consuming. By adding two sets of double stranded RNA to each well, one that targeted the tumor suppressor gene pten and the other the gene to be tested, the researchers found that they were able to identify genes that modified the effects of inhibiting pten in cells. "These results demonstrate that modifier screens, as previously done in vivo, can be extended to RNAi screening methodology in cell culture", write the researchers.

Drug companies are becoming interested in this technique, as the rate-limiting step in cell-based drug discovery is finding out which protein is inhibited by a particular drug. Using Perrimon’s method they can screen to see which gene, when inhibited, changes the cell in the same way as adding the drug.

"RNAi screens can complement classical Drosophila genetics to assign functions to both known and novel genes," write the researchers. "The same technology can be easily adapted to a wide variety of cell-based studies and a greater genomic scale."

Baum says, "The major difference between this and whole fly screens is that here we can be systematic. We can choose to look at any cell biological process and systematically test the set of genes that could be involved. In the future we will be able to screen the full genome in a few weeks, and look at any cell biological phenomenon."

This press release is based on the following article:

A functional genomic analysis of cell morphology using RNA interference
A A Kiger, B Baum, S Jones, M R Jones, A Coulson, C Echeverri, N Perrimon
Journal of Biology 2:27
http://jbiol.com/content/2/3/27
Published 1 October 2003

Gemma Bradley | BioMed Central
Further information:
http://jbiol.com/content/2/3/27
http://www.biomedcentral.com),

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>