Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering what genes do the high-throughput way

01.10.2003

Researchers at the Howard Hughes Medical Institute in Boston have developed a fast and systematic method that could make it easier to understand how cells from complex animals work. Their results, published this week in Journal of Biology, should inspire scientists to perform comprehensive screens of the fruit fly genome to find molecules that control a variety of cellular processes.

The research team, led by Norbert Perrimon, systematically inhibited the function of around 1,000 Drosophila genes that are predicted to affect diverse cellular processes. They observed that 16% of the inhibited genes altered the form or structure of the cells in some way.

Genes that caused the same changes in the cells when inhibited are likely to work together in a complex or pathway. Clustering genes by their effects allowed the researchers to assign functions to about 50 previously uncharacterised genes. Author Buzz Baum says, "The most exciting thing for me is that now you can take a step back and look at the bigger picture. You can find out which genes act together to do something, so you begin to build up a system-wide understanding of how cells work. Genes work in a community to do something, not on their own. With big-scale experiments you can start to see the internal logic of the cell."

The screening method makes use of RNA interference (RNAi) - introducing double stranded RNA into cells, to interfere with the expression of specific genes. In order to scale up the procedure, which normally tests one gene at a time, the researchers plated out cells into 384-well dishes and then added double stranded RNA to each well. After three days, when the targeted gene should be inhibited, they stained the cells so that they could visualise both DNA and components of the cytoskeleton. They then photographed the cells using an automated microscope.

Two postdoctoral researchers, Baum and Amy Kiger, independently studied the thousands of photographs generated by the screen to characterize the effects of the RNAi treatment on the cells. They created a formal set of criteria to judge the cells consisting of seven classes of change that could have been induced. These included changes to cell number, shape, size and viability. Any changes were only considered significant if both scientists recorded them in replica experiments.

The researchers were also keen to find out if their method could be used to screen for genes that worked in, or inhibited specific molecular pathways. Screens in whole flies for genes that modify the effect of a particular genetic mutation have proved powerful, though time consuming. By adding two sets of double stranded RNA to each well, one that targeted the tumor suppressor gene pten and the other the gene to be tested, the researchers found that they were able to identify genes that modified the effects of inhibiting pten in cells. "These results demonstrate that modifier screens, as previously done in vivo, can be extended to RNAi screening methodology in cell culture", write the researchers.

Drug companies are becoming interested in this technique, as the rate-limiting step in cell-based drug discovery is finding out which protein is inhibited by a particular drug. Using Perrimon’s method they can screen to see which gene, when inhibited, changes the cell in the same way as adding the drug.

"RNAi screens can complement classical Drosophila genetics to assign functions to both known and novel genes," write the researchers. "The same technology can be easily adapted to a wide variety of cell-based studies and a greater genomic scale."

Baum says, "The major difference between this and whole fly screens is that here we can be systematic. We can choose to look at any cell biological process and systematically test the set of genes that could be involved. In the future we will be able to screen the full genome in a few weeks, and look at any cell biological phenomenon."

This press release is based on the following article:

A functional genomic analysis of cell morphology using RNA interference
A A Kiger, B Baum, S Jones, M R Jones, A Coulson, C Echeverri, N Perrimon
Journal of Biology 2:27
http://jbiol.com/content/2/3/27
Published 1 October 2003

Gemma Bradley | BioMed Central
Further information:
http://jbiol.com/content/2/3/27
http://www.biomedcentral.com),

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>