Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune alarm system can both amplify and silence alerts, scientists find

26.09.2003


Chance encounter between two labs resurrects dying immune system theory



A lucky encounter between laboratories at Washington University School of Medicine in St. Louis and the University of California-Berkeley has resurrected a moribund theory about how the immune system mobilizes one of the body’s most important defensive systems: the immune system cells known as T lymphocytes.

The new findings, published online by the journal Science this week, are a key step toward understanding the intricate molecular processes that allow the body to recognize a cell infected by an invader and destroy it.


Ironically, the theory confirmed by the new results involves two cells bumping together -- the same thing that happened when Arup Chakraborty, Ph.D., professor of chemical engineering at Berkeley, called Andrey Shaw, M.D., professor of pathology and immunology at Washington University, and asked him to look over a new paper.

Chakraborty’s original paper, later merged with Shaw’s results to form the Science paper, featured a computational model of the immune synapse theory, a hypothesis formulated eight years earlier by Shaw and two coauthors in Washington University’s Department of Pathology and Immunology, Michael Dustin, Ph.D., and Paul Allen, Ph.D.

The three had speculated that when T cells bump against another type of immune system cell, the antigen-presenting cell, proteins on the surface of both cells reorganize and interact at the point of contact, potentially enhancing the transmission of a key message to the T cell: "Invaders are here, start the attack!" Because nerve cells also have specialized structures at areas known as synapses where they pass messages to each other, the authors referred to the contact between the immune cells as an immune synapse.

Shaw and colleagues had shown through years of research that specialized synapse structures formed when antigen-presenting cells and T cells bumped into each other, and that those structures were stable for an unusually long period of time. But when contacted by Chakraborty, Shaw had been in the process of writing a paper acknowledging that the latest experimental results, like several other recent experiments, seemed to suggest that the immune synapse wasn’t behaving like they expected.

"The kind of nail in the coffin came when we tested cells that were deficient in CD2AP, one of the proteins that we work with that helps form the synapse," Shaw recalls. "When we looked at those cells’ ability to form synapses, we found that in fact the cells did not form what we would call any recognizable synapse."

Despite the lack of synapses, T cells came away from the collisions activated -- as though they’d received the "attack!" message. This led Shaw to speculate that the synapse might form to deactivate the T cell.

"That was kind of disappointing to us, because this idea that the synapse would be uniquely involved in whether a cell would be turned on was this beautiful idea that we really, really liked," Shaw says.

Chakraborty’s computational model revealed a new perspective on the complex mix of factors interacting in the two types of cells, rescuing the "beautiful idea" by suggesting that the immune synapse was linked both to turning T cells on and to shutting them down. According to Chakraborty’s results, the greater the synapse’s ability to amplify the "attack!" message upon initial contact, the harder the synapse could work to shut that same message down in later stages of contact.

In collaboration with Michael Dustin, Ph.D., now at New York University Medical School, Shaw’s group was quickly able to devise an experimental test that proved Chakraborty’s interpretation correct. CD2AP, the protein whose levels had been lowered in Shaw’s most recent experiments, turned out to be involved in the synapse’s ability to dampen signaling by pushing activated receptors on the surface of the T cells toward the lysosome, a kind of cellular garbage can.

"We used the term adaptive controller, an engineering term, to describe the synapse," Shaw explains. "It helps to amplify weak signals by concentrating ligands and receptors in the same area of the cells. But at the same time, it prevents strong signals from overpowering the cells -- which in most cases would lead to cell death -- by rapidly turning off the very strongest signals.

"We only realized this with the use of a computational analysis that allowed us to see how all these different variables were playing out," he says. "There’s a lot of talk that goes around about this need for a union between computational biology and what I would call wet biology, and I think it’s hard for most of us to imagine how that would work … But this was a case where I really thought it was beautiful, it worked together so perfectly."

Shaw notes that while the new results confirm several key concepts in the immune synapse theory, there are still some aspects that need to be directly tested, including the synapse’s ability to amplify a very weak "invaders are here" signal.



Lee K-H, Dinner AR, Tu C, Campi G, Subhadip R, Varma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen P, Dustin ML, Chakraborty AK, Shaw AS. The Immunological Synapse Balances T Cell Receptor Signaling and Degradation. Science Express, September 25, 2003.

Funding from the National Institutes of Health, the Psoriasis Foundation, the Irene Diamond Foundation, the Burroughs-Wellcome Fund, and the National Science Foundation supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
26.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>