Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule found to be critical for kidney development

09.09.2003


By taking advantage of techniques developed in the search for Alzheimer’s treatments, a team of researchers has discovered that a molecule called Notch is essential for the development of critical kidney cells. The study, published online and in the Oct. 15 issue of the journal Development, provides key information about kidney development that could have implications for tissue regeneration.



"Tissue transplantation is fantastic but it would be so much better if we could instead raise organs from a patient’s own cells," says lead investigator Raphael Kopan, Ph.D., associate professor of medicine and of molecular biology and pharmacology at Washington University School of Medicine in St. Louis. "Before we can actually trick cells into doing what we want them to do we really need to understand every detail about how the organ is put together."

Using an antibody that specifically identifies the active form of Notch, Kopan’s group observed that the protein is extremely active in the kidney at an earlier stage than previously thought. So they teamed up with kidney development expert Jeffrey H. Miner, Ph.D., associate professor of medicine and of cell biology and physiology, to investigate further. First, though, they had to resolve a methodological conundrum: How do you study the effect of Notch in the kidney if animals without Notch die before the kidney begins to form?


The answer came from an entirely different field: Alzheimer’s disease. In 2001, Kopan’s team discovered that a group of potential Alzheimer’s drugs that inhibit a protein complex called gamma-secretase also interfere with Notch. For clinical purposes, the drugs have since been refined to minimize their potentially dangerous effects on Notch. But drugs that severely inhibit this protein are perfect for studying its activity in laboratory animals.

"We took advantage of developments in different fields to allow us to do this analysis," says Kopan. "Without collaborating and combining our knowledge, we would not have been able to conduct this study."

The team removed both kidneys from normal mice during early development and placed them in organ culture. They treated one kidney from each mouse with a gamma-secretase inhibitor and showed that this process prevented all Notch signaling. The second kidney from each animal was used for comparison.

After three days of treatment with the inhibitor there were fewer and less developed tubular structures in the treated compared to the untreated kidneys. These differences became more pronounced after five days of treatment: Tubes in untreated tissue branched an average of 10 times and the tips of these branches had consistent, small diameters; tubes in treated tissue only branched a maximum of eight times and their branches were more irregularly shaped.

For the most part, the treated cells successfully passed through the first stage of development, in which they evolved from embryonic, precursor cells into epithelial cells, which form the lining of the organ. But the most pronounced abnormalities occurred in the next stage of development, in which the cells become more specialized.

Urine is formed in the kidney’s functional units, called nephrons. Within each nephron are several structures, including a long, winding tube called the proximal tubule and octopus-shaped cells called podocytes that wrap their "feet" around blood vessels. After two days of treatment with the gamma-secretase inhibitor, neither podocytes nor proximal tubule cells formed. Another nephron structure, the distal tubule, was not disturbed.

"The most exciting finding was that Notch signaling appears to tell some cells to become podocytes from a mass of non-specialized epithelial cells," Miner says. "This shows that Notch is involved at an earlier stage of podocyte development than any other factor that’s been identified so far."

Even more surprising was that the tissue lost the ability to form podocytes after a certain amount of time. If Notch signaling resumed after two days, podocytes recovered. But if it did not resume until three days or more, the cells instead developed into those that comprise the proximal tubule.

"It’s as if the cell can tell time," Kopan explains. "After three or four days without Notch signaling, it realizes it will never become a podocyte and decides to respond to the next signal it receives."

Next, the team hopes to further differentiate the role of Notch in formation of each component of the nephron, and to determine the specific genes responsible for this particular developmental pathway.


Cheng HT, Miner JH, Lin MH, Tansey MG, Roth K, Kopan R. g-Secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podoctye and proximal tubule formation in developing mouse kidney. Development, vol. 130, pp. 5031-5042, Oct. 15, 2003.

Funding from the National Institutes of Health, the Alzheimer’s Association, the Zenith award, the American Heart Association and the March of Dimes supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Gila Z. Reckess | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>