Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA throttle controls molecular machine

05.09.2003


A DNA sequence that acts as a throttle to control the rate at which an enzyme moves along the DNA has been observed by researchers at UC Davis. By controlling the activity of the RecBCD helicase enzyme, the "Chi" sequence can affect how efficiently genes are repaired.

RecBCD unwinds the DNA double helix so that the genetic code can be read, copied or repaired. This unwinding is an essential first step in most processes involving DNA.

The research findings, which are published in the September 5 issue of the journal Cell, could explain how short DNA sequences such as Chi can interact with enzymes and affect how DNA is copied or repaired. They could also give insight into how to control the speed of tiny nanomachines built for various purposes.



The enzyme moves along DNA at a rate of up to 1000 base pairs a second. Using special apparatus to film single enzymes at work in real time, the UC Davis researchers found that when RecBCD reaches the eight-letter Chi sequence, it stops for up to 10 seconds and then carries on at half speed.

The researchers attached DNA molecules labeled with a fluorescent dye to polystyrene beads one-millionth of a millimeter in size. Under the microscope, the bead looks like a white sphere with a bright string of DNA attached.

The researchers were postdoctoral scholars Maria Spies, Piero Bianco, Mark Dillingham and Naofumi Handa with Stephen Kowalczykowski, professor of microbiology and director of the UC Davis Center for Genes and Development, and Ronald Baskin, professor of molecular and cell biology.

They let RecBCD attach to the free end of the DNA strand, and used laser beams as "optical tweezers" to move the beads into position under a microscope.

As RecBCD unwinds the DNA strands, the fluorescent dye is removed, so the bright string of DNA appears to shorten.

When the researchers put RecBCD onto DNA molecules carrying the Chi sequence, they found that RecBCD stops for up to 10 seconds when it reaches the beginning of the Chi sequence, then continues at a slower rate.

"It’s a complete surprise," Kowalczykowski said. The results would have been impossible to find with a conventional bulk experiment averaging the activity of many enzymes and DNA molecules, he said.

RecBCD is a molecular machine made up of three proteins. Two of these are motor units that propel the enzyme along the DNA double helix. Kowalczykowski believes that the change in velocity is due to one of two motor subunits in RecBCD being switched off by the Chi sequence.

The Chi sequence is known to be associated with "hotspots" where genes are readily exchanged, or recombined, between chromosomes.


Media contact:
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | UC Davis
Further information:
http://www.news.ucdavis.edu/search/news_detail.lasso?id=6671

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>