Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore & NIH scientists create technique to examine behavior of proteins at single molecule level

29.08.2003


A Lawrence Livermore National Laboratory physicist, in collaboration with an international team of researchers, has developed an experimental method that allows scientists to investigate the behavior of proteins under non-equilibrium conditions one molecule at a time, to better understand a fundamental biological process of protein folding that is important for many diseases.



The work, presented in the Aug. 29 edition of Science, marks the first time protein-folding kinetics has been monitored on the single-molecule level. Proteins are long chains of amino acids. Like shoelaces, they loop about each other or fold in a variety of ways, and only one way allows the protein to function properly. Just as a knotted shoelace can be a problem, a misfolded protein can do serious damage. Many diseases, such as Alzheimer’s, cystic fibrosis, mad cow disease and many cancers result from misfolded protein.

Livermore’s Lawrence postdoctoral fellow Olgica Bakajin worked with scientists from the NIDDK Laboratory of Chemical Physics at the National Institute of Health and the Physikalische Biochemie Universität Postadam in Germany to develop a microfluidic mixer for studies of protein folding. With this mixer, researchers were able to access information about the protein folding reaction that was never available from ensemble measurements or even from the newer single molecule equilibrium measurements.


"For the first time, in this experiment we were able to look at a protein on a single molecule level at defined times after the folding reaction was initiated," Bakajin said. "With this method we are able to see and isolate intermediate states that under equilibrium conditions only exist for a brief period of time.

"This is a fundamental science project. We would like to understand the sequence of events through which a protein goes from a random coil to its functional ’folded’ form, and we’ve designed an instrument that can help us do this. Now the instrument can be used to study many different proteins so we can come up with some general rules as to how proteins fold."

Understanding of protein folding will contribute to better understanding of the diseases, which in turn will lead to better treatments. Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>