Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Sophisticated molecular machine’ is found to govern cell’s reading of genetic code in Cornell research

22.08.2003


The process by which a cell reads the genetic code in its DNA in order to manufacture a protein is complex, involving dozens of enzymes and other biological molecules working together.

Now, research at Cornell University, using the fruit fly as a model system, has confirmed a theory about one step in the process by showing that a protein complex known as FACT is positioned in living cells at sites where chromosomal DNA is unpacked so that its code can be read. It is part of what the researchers call "a sophisticated molecular machine" that is not yet completely understood. The research is reported in the latest edition (Aug. 22) of the journal Science .

"This process is fundamental to the expression of all genes, whether they are normally expressed genes or genes that contribute to disease -- all these use the same machinery," says John T. Lis, Cornell professor of molecular biology and genetics, who supervised the research.



Two other related papers on the topic also will be published in the same issue of Science from groups at the Robert Wood Johnson Medical School and Harvard Medical School. The cover image of the issue, from the Cornell and Robert Wood Johnson research groups, shows FACT appearing at the same locations as two other transcription factors on fruit fly (Drosophila ) chromosomes.

To fit into the nucleus of a cell, DNA must be packed into folded structures called nucleosomes that in turn form higher order structures. When the cell needs to manufacture a particular protein, nucleosomes open to expose the part of the chromosomal DNA where the gene for that protein is located. This allows an enzyme called RNA polymerase II to contact the gene to transcribe its code onto another molecule called messenger RNA. In turn, the messenger RNA travels out of the nucleus into the cytoplasm and to another cell structure called a ribosome, where a protein is manufactured according to the transcribed code.

But what causes the nucleosome to open? The theory has been that the FACT (short for Facilitates Chromatin Transcription) protein acts as a "chaperone" in the process. To confirm this, the Cornell researchers worked with a culture of fruit fly cells and studied the activation of a gene that responds to heat shock by rapidly making large amounts of protein that helps the fly adjust to heat stress. The process of gene expression is the same throughout the animal kingdom, so the work applies as much to humans as to fruit flies, Lis notes.

The researchers subjected the cell culture to a sudden rise in temperature to activate the gene. Within seconds the enzyme RNA polymerase II, familiarly known as Pol II (one of the three polymerase enzymes that work with different kinds of genes), travels to the multiple sites where the heat-shock genes reside and transcribes them. The researchers "froze" the process at various stages by introducing chemicals that, in effect, lock the various molecules involved into place, a process called cross-linking. They also introduced antibodies that attach to Pol II and FACT molecules and fluoresce in different colors under ultraviolet light.

With an optical microscope, the researchers could then see the location of Pol II and FACT on the DNA strand. By introducing the cross-linking at various times, they created a step-by-step record of the process. As predicted in the theory, they found that both Pol II and FACT quickly move to chromosomal sites containing the heat-shock gene.

Other proteins, Spt5 and Spt6, known as "elongation factors," also were found at the sites. When these were examined at still higher resolution by biochemical methods, the researchers found that FACT and Spt6 are located where they could be involved in the dissassembly of nucleosomes as well as their reassembly after transcription.

In related research reported in Science , Fred Winston of Harvard Medical School studied the same process in yeast, and Danny Reinberg of Robert Wood Johnson Medical School studied the biochemical mechanics of the process.

The Cornell paper is titled "Tracking FACT and the RNA Polymerase II Elongation Complex Through Chromatin in Vivo." Co-authors are graduate student Abbie Saunders, laboratory technician Janis Werner, postdoctoral fellow Erik Andrulis, collaborators Takahiro Nakayama and Susumu Hirose of the Japan National Institute of Genetics, who supplied critical antibodies for the experiments, and Reinberg.

Bill Steele | Cornell News
Further information:
http://www.news.cornell.edu/releases/Aug03/FACT.ws.html
http://www.mbg.cornell.edu/lis/lis.html
http://www.mbg.cornell.edu/lis/research.html

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>