Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes that paint fly derrieres hint at convergence

21.08.2003


Nicolas Gompel, postdoctoral fellow in molecular biology, uses a sweeping net to catch fruit flies in the University Housing community garden. Gompel researches the genes that drive differences in pigmentation in fruit flies (genus Drosophila), using flies caught in his apartment and around the University Housing community garden compost heap.
Photo by: Michael Forster Rothbart


This male fruit fly (Zaprionus vittiger) devoid of abdominal pigments illustrates the morphological diversity of abdominal pigmentation in Drosophilidae. Nicolas Gompel, postdoctoral fellow in molecular biology, researched the genes that drive differences in pigmentation in fruit flies (genus Drosophila), using this fly from a species stock center and other flies caught at his University Housing apartment and at the University Housing community garden compost heap.

Photo by: Nicolas Gompel


How vastly different animals arrive at the same body plan or pattern of ornamentation has long been a conundrum of developmental biology.

But now, thanks to the colorful derriere of a wild fruit fly, captured on a compost heap by a University of Wisconsin-Madison post-doctoral student, scientists have been able to document a rare example of molecular convergence, the process by which different animals use the same genes to repeatedly invent similar body patterns and structures.

Writing in the current issue (Aug. 21) of the journal Nature, a group led by Sean Carroll and Nicolas Gompel of the Howard Hughes Medical Institute (HHMI) at UW-Madison, describes the genetic mechanisms that control the colors and patterns on fruit fly abdomens. The study suggests that the simple modulation of a transcription factor, a protein that can bind to DNA and influence its activity, may be responsible for governing the diversity of body color patterns among related animal species.



"At the visual level, evolution repeats itself," Carroll explains. "Insects evolved wings. Birds evolved wings. Bats evolved wings. The question we are asking is - in related animals like insects, for example - did they arrive at these body plans or decorations in the same way?"

Conveniently, the answer was found with the help of a wild fruit fly, captured by Gompel, a post-doctoral fellow. Pursuing his hobby of collecting and systematizing insects near a wooded tract close to Eagle Heights, a housing complex for UW-Madison students and their families, Gompel captured a wild fruit fly that looked very much like the species Drosophila melanogaster, the workhorse of many modern genetics laboratories.

"I found a Drosophila with a pattern of pigmentation similar to melanogaster, though this species was obviously very distant," Gompel explains. "I bred it and studied it, and found that the genetics underlying its pigment pattern was similar to melanogaster."

By comparing the molecular workings of the captured fly, and other fly species snared or otherwise acquired by Gompel, the Wisconsin group was able to find genetic commonalities across 13 species covering the various branches of the fruit fly family.

They found that a common gene known as ’Bric-a-brac2’ is selectively influenced - tweaked by transcription factors - to produce a wide range of pattern and color pigmentation on the abdomens of fruit flies across many species.

The discovery of this example of molecular convergence, according to Carroll and Gompel, provides biologists with new insight into how genes that are shared by many animals can be used in different ways to influence body plans.

"We wanted to know, are these things crossing the same bridge to get to a desired destination," Carroll explains. "The answer, we found, was yes and no. There are other ways across the river. "

In some instances, Carroll and Gompel found that the genetic mechanism or bridge to influence the gene was blocked. "It was not open for business in some of these groups," Carroll says. "But what we learned was that similar (body) patterns can evolve in both as animals use the same path or a different route" to the same end.

A related mechanism may be at work in the familiar ladybird beetle, Carroll suggests, as it is known that one can get "boatloads of different patterns using the same genes. In that case, diversity is accomplished through the same mechanism.

"You can take one (genetic) player, tinker with it and get all these different patterns," he says. "But you can still get similar patterns without touching the same brush," he says.

Diversity is a key point, says Gompel, because it is an important aspect of natural history, and its evolutionary and developmental bases are not well understood by biologists.

"If you look at other animals - cats, for instance - you’ll see a very broad range of color patterns that are just different overlays on the same body plan. You can extend this overlay rule to land snails, king snakes, hummingbirds, butterflies and so on," he says.

Because the patterns are complex and their range is extensive, it is often assumed that the genetics that underpin them are complex. But the Wisconsin study, Gompel says, suggests that the molecular basis for such diversity can be narrowed down to a reasonably simple genetic game plan.

"We’ve looked at fly species that are in the same range of morphological divergence as the house cat, the leopard, the cheetah and the panther," he says.

In that context, Gompel says, it demonstrates how a few genes, influenced in subtle ways, can control body decoration, coloring and patterning across the animal kingdom.


Terry Devitt 608-262-8282, trdevitt@facstaff.wisc.edu

CONTACT: Nicolas Gompel 608-262-7898, ngompel@wisc.edu;
Sean Carroll 608-262-6191, sbcarrol@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.news.wisc.edu/newsphotos/gompel.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>