Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dual Discoveries in Genetic Processing Improve Accuracy of Genome Information

11.08.2003


University of Connecticut Health Center geneticists have made a two-fold discovery in gene recoding that will significantly increase understanding of the information in genome sequences and could prove to be a knowledge expressway scientists need for unraveling nervous system disorders such as Parkinson Disease and epilepsy.

The research, published in the Aug. 8 issue of the journal Science, was supported by the National Science Foundation (NSF), the independent federal agency that supports fundamental research and education across all fields of science and engineering.

Geneticist Robert Reenan and fellow researchers used comparative genomics to discover a telltale signature of genes that are recoded as DNA is converted to RNA during the protein-making process. There, an enzyme converts adenosine to the nucleoside inosine by a process called "A-to-I" RNA editing. The scientists subsequently found that such recoding is largely confined to the nervous system across species and pinpointed a target of the process in humans.

"The proteins targeted by editing are basically the machinery that allow nervous systems to function on a timescale of milliseconds, which is not a demand placed on every organ," said Reenan.

The phylogenetic signatures are identical sequences of genetic coding found in each species studied, serving as markers corresponding to specific genes targeted for A-to-I RNA editing. The identical presence in both species suggests that the editing site arose some time ago evolutionarily and has been retained in these species -- and likely others -- because it provides a broadly useful selective advantage for survival.

Recoding, or "RNA editing," and the entire process are much like photocopying a recipe from a cookbook and writing changes on the photocopy rather than on the book’s pages. The revisions on the copy would then be used to prepare the food, but the original recipe in the book would remain unchanged.

For cells to manufacture protein, they must first copy the segment of the gene’s DNA that holds the blueprint or Scoding" for the protein. This copy, which consists of a single strand of RNA, is called messenger RNA, or "mRNA." Converting the DNA into the mRNA instructions that code for the manufacture of protein from amino acids is called "transcription." The working mRNA copy is sometimes modified, or "recoded," as it is formed. It is unknown how many RNA transcripts for genes are recoded in the human genome because this process occurs on the copies rather than the original.

For more than a decade, sites where A-to-I RNA editing had occurred were discovered largely by chance. "The one thing that becomes clear about the RNA editing sites is that they’re all different; there (was) no way to predict where an RNA editing site would occur from genome sequence," said Reenan. "We hoped to get clues about RNA editing by comparing genomes of different species."

Clues came as the researchers compared more than 900 genes between two species of the fruit fly Drosophila. They found a signature in genomic DNA in genes shared between species where RNA transcription products are destined to be edited by the enzyme adenosine deaminase. "The signature we found was an unexpectedly high level of DNA sequence identity between species," said Reenan. The signature reliably identifies genes that are recoded during transcription, providing scientists with a means to predict the occurrence of editing.

"Being able to predict editing sites is a revolutionary discovery that will greatly increase the value of existing genome sequences," said Molecular Biologist Joanne Tornow, a program director with the NSF’s Division of Molecular and Cellular Biosciences. "Dr. Reenan’s use of comparative genomics to make this very significant finding underscores the importance of investing in the sequencing of a wide variety of organisms." Reenan and his colleagues then applied their newfound knowledge to a wide range of human, mouse and rat genes. They found the process also targets a gene in the human brain already known to foster an inherited form of epilepsy.

So far, the researchers have noticed A-to-I RNA editing in only nervous systems and specifically in genes encoding proteins necessary for sending fast electrical and chemical signals. They examined many genes not directly involved in nervous system function.

"The literal genome is not the final word and, for whatever reason, this mechanism (A-to-I editing) is almost exclusive to the nervous system," Reenan said.

With the knowledge of the signature and that A-to-I RNA editing occurs primarily in nervous systems, scientists can now more closely examine how recoding affects expression by nervous systemspecific genes, including those responsible for epilepsy and Parkinson Disease.



Principal Investigator: Robert Reenan, (+1-860) 679-3691, rreenan@neuron.uchc.edu

Manny Van Pelt | National Science Foundation
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht New sensor detects rare metals used in smartphones
24.04.2019 | Penn State

nachricht Controlling instabilities gives closer look at chemistry from hypersonic vehicles
24.04.2019 | University of Illinois College of Engineering

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>