Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers discover method of postponing labor in mice

29.07.2003


Researchers at UT Southwestern Medical Center at Dallas have discovered a way to inhibit a biochemical process that accompanies labor and to postpone delivery for one to two days in pregnant mice.

"Since the biochemical steps associated with labor are likely the same in both mice and humans, a similar treatment might someday help prevent pre-term labor in women," said Dr. Carole Mendelson, professor of biochemistry and obstetrics and gynecology and senior author of the study, published online this week in Proceedings of the National Academy of Sciences.

The researchers administered the drug trichostatin A, which affects the function of receptors for progesterone, a hormone that prevents the uterus from contracting throughout most of pregnancy. The drug effectively delayed the start of labor by allowing progesterone to continue functioning. The postponement of labor was significant because mice have a gestation period of only 19 days.



In humans, progesterone and its receptors are maintained at elevated levels in the uterus throughout pregnancy and after labor begins.

"We postulated that labor is caused by a number of factors that prevent progesterone from continuing to act to maintain uterine quiescence," Dr. Mendelson said.

In this study, the researchers analyzed a group of proteins -- called co-activators -- that allows progesterone receptors to function. They examined tissues taken from the uteruses of women in labor (undergoing Caesarean section) and those not in labor.

"We found that certain co-activators decrease very markedly in labor," she said. "We then extended our research to animal models because we wanted to look at the changes that occur throughout pregnancy. We chose to use the mouse, which we found to manifest the same types of changes in these activators at the end of pregnancy and during labor as humans."

Co-activators have the capacity to alter chromatin structure around progesterone-responsive genes by increasing the acetylation of histones. The genes are active when the histones are acetylated and chromatin – the genetic material of the nucleus – is open to progesterone receptors, said Dr. Mendelson.

"At the end of pregnancy and during the beginning of labor in mice and humans, there is a marked decrease in the acetylation of histones. This causes the chromatin structure to become closed, so the receptors can’t act properly," she said.

The researchers administered trichostatin A, a histone deacetylase inhibitor, to pregnant mice late in gestation. This increased histone acetylation in the uterus and prevented pre-term labor.

"We were able to keep the chromatin ’open’ so the progesterone receptors could continue to function," said Dr. Mendelson.

The researcher said the discovery could be of use in preventing pre-term labor in women.

"Since pre-term birth – which can have devastating immediate and lifelong consequences – affects more than 460,000 infants in the United States each year, our findings could impact the care of pregnant women and the well-being of their babies in the future," Dr. Mendelson said.

Amy Shields | EurekAlert!
Further information:
http://lists.utsouthwestern.edu/mailman/listinfo/utswnews

More articles from Life Sciences:

nachricht Selectively Reactivating Nerve Cells to Retrieve a Memory
01.06.2020 | Universität Heidelberg

nachricht CeMM study reveals how a master regulator of gene transcription operates
01.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>