Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers locate tumor-suppressor gene in fruit flies that controls cell production, death

16.07.2003


UT Southwestern Medical Center at Dallas researchers have discovered a tumor-suppressor gene that, in fruit flies, simultaneously restricts cell proliferation and promotes cell death, a process that may also play an important role in the genesis of cancer in humans.



Removal of the gene, hippo, resulted in tumor formation in every organ of the fruit fly. The findings, which are currently online, will appear in an upcoming issue of Cell.

"This is one of the few genes that has been discovered that directly controls two pathways, cell proliferation and cell apoptosis, or cell death," said Dr. Duojia Pan, assistant professor of physiology and senior author of the study. "Sustained growth of cancer cells requires activation of the cell proliferation machinery and suppression of a system called the apoptotic failsafe mechanism. The combination of suppressed cell death and deregulated cell production is likely a key element in cancer."


The researchers identified hippo by screening the fruit fly, or drosophila, genome for mutations that promoted abnormal tissue growth.

To determine the relationship between hippo and a similar protein found in humans, the researchers replaced the tumor-suppressor gene in fruit flies with a protein in humans called MST2. This resulted in the reduction of tumors in the fruit flies, leading researchers to hypothesize that MST2 plays a similar role in human-tumor suppression.

"We hypothesize that this protein (MST2) may be inactivated in some humans, causing the onset of tumor growth. Tumor suppression is important in humans because it is required to restrict abnormal growth of tissues," said Dr. Pan, the Virginia Murchison Linthicum Scholar in Medical Research.

The researchers report also that hippo is linked to two other tumor-suppressing genes, Salvador and warts.

"These three tumor-suppression genes may define a tumor suppression pathway that coordinately regulates cell proliferation and apoptosis," Dr. Pan said. "This pathway may also be involved in the formation of tumors in mammals."

Current research suggests that the human counterpart of Salvador is mutated in several cancer-cell lines.

"Our findings will stimulate investigations of this tumor suppression pathway in human cancers," Pan added.

By studying fruit flies, scientists have the ability to perform more experiments than in human studies because the fruit fly genome is easily mutated. Fruit flies carry approximately 70 percent of the same disease genes as humans.

Dr. Pan is currently studying three other tumor-suppressor genes, including PTEN, Tuberous Sclerosis 1(TSC1) and Tuberous Sclerosis 2 (TSC2). These genes have previously been identified as tumor-suppressor genes in humans.

Other researchers on the study were Drs. Jixin Dong, Jianbin Huang, and Shian Wu, all postdoctoral researchers in physiology.

The study was supported by the National Institutes of Health, the American Heart Association and the American Cancer Society.


###

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>