Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growing green gold

06.06.2003


A new way to make gold form inside the cells of a micro-organism is published today in the Institute of Physics journal Nanotechnology. Researchers from the National Chemical Laboratory and the Armed Forces Medical College, both in Pune, India, have been using “green chemistry” to develop an eco-friendly way to make tiny gold particles without using toxic chemicals.



Such gold nanoparticles of uniform size can be used in labelling proteins, nucleic acids and other biomolecules, which could lead to new ways of detecting disease, controlling genes and enzymes, and delivering therapeutic drugs directly to the nucleus of the cell. The technology can also be used in developing nanomaterials and nanoelectronics.

The research group took a micro-organism called Rhodococcus from a fig tree, and exposed it to a liquid containing gold ions (which are electrically charged gold particles, rather than neutral ones). They found that the micro-organism caused the gold ions to gain electrons, thereby forming gold nanoparticles within the micro-organism’s cells. These nanoparticles are more concentrated and more uniform in size than particles biosynthesised by previous methods that used a fungus. Although the exact reaction that causes the gold to form is not yet fully known, the group believe that the Rhodococcus species gives better results because it is a certain type of micro-organism (an actinomycete) that shows characteristics of both bacteria and fungi, rather than just being a fungus.



“I am extremely pleased with the formation of these gold nanoparticles. They are mainly between about nine and twelve nanometres in diameter, with a few larger particles. That’s about eight thousand times smaller than a human hair,” said Dr. Murali Sastry from the National Chemical Laboratory, India. “This is much more uniform than the particles formed using other biological methods. Having uniformly sized particles will be needed if we are to use this method in biodiagnosis using gold nanoparticles or to deliver therapeutic drugs.”

Following the biosynthesis of gold nanoparticles in Rhodococcus species, its cells continued to multiply normally, as the ions used were not toxic to the cells – which is important as more gold would be formed as the cells multiplied.

The group will soon be looking into making the nanoparticles on a large scale, which could be attained by genetically modifying actinomycetes to produce more of the enzymes which cause the gold to form.

Michelle Cain | alfa
Further information:
http://stacks.iop.org/Nano/14/824

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>