Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical early-defense trigger in plants found

16.05.2003


The gene for an enzyme that is key to natural disease resistance in plants has been discovered by biologists at the Boyce Thompson Institute for Plant Research (BTI) and at Cornell University. The researchers say that by enhancing the activity of the enzyme they might be able to boost natural disease resistance in crop plants without resorting to pesticides or the introduction of non-plant genes.

The research, reported in the latest (May 16) issue of the journal Cell , describes the discovery of the gene that codes for an enzyme (a protein that carries out a chemical reaction) that is activated when a plant senses it is being attacked by a pathogen. When activated, the enzyme produces nitric oxide (NO), a hormone that tells the plant to turn on its defense arsenal.

According to plant pathologist Daniel F. Klessig, lead author of the Cell paper and president of BTI, located on the Cornell campus, the discovery provides a new understanding of the biochemical and genetic pathways in plants that enable them to protect themselves from disease.



"It’s known that the hormone nitric oxide plays an important role in immunity in plants as well as in humans and other animals," says Klessig. "But the enzyme responsible for its production in plants was unknown until now. With this discovery, we may be able to modify plants so that they produce nitric oxide more quickly, or in larger amounts, when they are attacked by a disease-causing pathogen, enabling them to better protect themselves from invaders."

Authors of the Cell paper, "The Pathogen-Inducible Nitric Oxide Synthase (iNOS) in Plants is a Variant of the P Protein of the Glycine Decarboxylase Complex," also include Meena Chandok, a BTI senior research associate; Anders Jimmy Ytterberg, Cornell doctoral candidate in plant biology; and Klaas J. van Wijk, Cornell assistant professor of plant biology.

"This discovery really is a surprise because the plant enzyme looks very different from mammalian nitric oxide-synthesizing enzymes,"said Brian Crane, Cornell assistant professor of chemistry and chemical biology. Crane now is working with Klessig and Chandok to determine the three-dimensional structure of the protein that will lead biologists to understand its chemical mechanism.

The discovery is significant, the researchers note, because NO is a critical early-warning signal to the plant that it needs to activate its immune response. The difficulty inherent in the research, according to Klessig, was that the plant’s NO-producing enzyme has a completely different sequence than enzymes with similar activity found in all animals. The new research suggests, he says, that the chemistry the plant and animal enzymes use to produce NO also is different.

These differences, Klessig says, could provide clues concerning the way the animal enzyme works, which, in turn, could lead to improved treatment of human diseases by enhancing the activity of the enzyme.

"Part of the success of the green revolution depends on the use of chemical-based fungicides and other pesticides to protect crops against microbial pathogens and insects," says Klessig. "An alternative strategy to protect crops utilizes a plant’s own natural defenses. An approach in which plant molecular biologists have overproduced plant proteins with antimicrobial activity, such as PR proteins or defensin, has met with only limited success to date, perhaps because only a small portion of the defense arsenal is involved.

"Our discovery of the enzyme that produces the critical early-defense signal, NO, means that we now may be able to regulate the production of this signal.

The turning up of this signal should lead to the turning on of a large portion of the defense arsenal. The end result could be crop plants that can better ward off disease without the use of potentially harmful fungicides and other pesticides, or the introduction of non-plant genes."

Van Wijk, whose research group identified the protein by tandem mass spectrometry, stresses that without the availability of the very sensitive mass spectrometry instruments and the plant genome information "we would not have been able to find this."

The Boyce Thompson Institute was opened in 1924 and is an independent, not-for-profit plant research organization. BTI funding for the Cell research was provided, in part, by a Plants and Human Health Grant from the Triad Foundation.

David Brand | Cornell News
Further information:
http://bti.cornell.edu
http://www.cell.com
http://www.news.cornell.edu/releases/May03/NewGeneKlessig.html

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>