Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside scientists contribute to study that unveils genome sequence of bread mold

30.04.2003


A Neurospora colony (bread mold). Photo credit: Douglas Ivey.


New knowledge will provide insight into organisms important to agriculture, medicine, the environment and commerce

In the April 24, 2003, issue of the journal Nature, scientists, including UC Riverside’s Katherine A. Borkovich, assistant professor in the department of plant pathology, and her postdoctoral fellow, Svetlana Krystofova, present the entire list of genes found in the Neurospora genome. (A genome is all the DNA in an organism, including its genes.) The scientists’ analysis promises many new insights into a variety of cellular processes, including environmental sensing, biological clocks, growth and development.

"Knowledge of the genes present in Neurospora will accelerate the analysis of both Neurospora and related fungal species," said Borkovich. "The genome sequence of the model system Neurospora provides a molecular insight into a large group of organisms important to agriculture, medicine, the environment and commerce."



Economic benefits of the research will emanate from the discovery of new targets for control of plant and animal pathogens and from the harnessing of filamentous fungi for the production of novel antibiotics and other secondary metabolites.

Neurospora, commonly known as the orange bread mold, was first described during an infestation of French bakeries in 1843. Domesticated as an experimental organism in the 1920s, Neurospora has been an important model system from that time until today.

"Neurospora is extremely tractable genetically and has been an important research organism for much of the last century," said Borkovich. "For example, the 1958 Nobel Prize winning work of George Beadle and Edward Tatum, which linked together the disciplines of genetics and biochemistry, or genes and proteins, was performed using Neurospora."

The natural habitat of Neurospora was originally thought to be limited to tropical and subtropical regions of the world. But wild isolates of Neurospora have been found in the temperate forests of North America in recent years. Neurospora sexual spores are well-known for their ability to germinate after a forest fire; the resulting colony then utilizes the burnt plant matter as a food source. For this reason, Neurospora can be seen growing in burnt sugar cane fields in hot and humid regions of the world.

Borkovich was involved in the genome analysis project with the Whitehead Institute Center for Genome Research (WICGR) in Cambridge, Mass. "I organized a group of Neurospora scientists from several institutions to analyze the large number of genes involved in growth and development," she said. "The data collected during the analysis phase has been archived and will form the basis of a detailed gene database at the WICGR."

The authors of the Nature paper determined the entire ~40 million basepair sequence of the genome of the filamentous fungus Neurospora. The genome sequence predicts about 10,000 genes, only 25% fewer than that found in the fruit fly Drosophila (14,000 genes) and 50% that of low estimates for the number of genes in humans. The Neurospora sequence is the first for a filamentous fungus and only the third fungal genome sequence that has been determined. The other two sequenced genomes, those of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, are only about one-half the size of Neurospora.

Borkovich noted that the number of closely-related genes in the Neurospora genome is much lower than predicted from the genome size. "This likely results from the action of a phenomenon termed Repeat-Induced Point mutation or RIP," she explained. RIP is a process that mutates duplicated genes during the sexual cycle in Neurospora, and is thought to provide a defense mechanism to destroy foreign DNA, such as that from invading viruses.

"The impact of Repeat-Induced Point mutation on the genome sequence is important, as it provides a tool to study evolution in an organism that cannot evolve new genes by gene duplication," Borkovich said.

A grant from the National Science Foundation funded the sequencing done at the Whitehead Institute Center for Genome Research. The analysis performed in Borkovich’s laboratory was funded by a grant from the National Institutes of Health.

The Department of Plant Pathology at the University of California, Riverside is committed to conducting research on the basic biology of plant pathogens; developing methods for the control of plant diseases; providing a quality education to its students; and, providing expert advice on plant diseases to the citizens of California and the world. The department has its roots in the Citrus Experiment Station, which was established in Riverside in 1906. Although the department has maintained a strength in the study of diseases of citrus, the interests of the faculty have expanded and now full-fledged programs also exist in the diseases of field crops, vegetables, ornamental plants, turfgrass, and subtropical trees.

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=573

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>