Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A subtle tool to study mankind’s diseases

25.03.2003


One of the most powerful tools in today’s biological and medical science is the ability to artificially remove and add bits of DNA to an organism’s genome. This has helped scientists to understand problems caused by defective genes, for example, which have now been linked to thousands of human diseases. So far the technology has been limited to small segments of DNA. But four years ago, Francis Stewart and his colleagues at the European Molecular Biology Laboratory (Heidelberg) developed a new technique to engineer greater stretches of DNA in bacteria. The researchers, now working at the Biotec-Technical University in Dresden, have just used this method to engineer a complex set of changes in a mouse gene, in hopes of shedding light on human leukemias. Their work appears in the current edition of the journal Nature Biotechnology.

Over two decades ago, researchers learned to use bacteria as "copy machines" for DNA taken from other organisms. This was a huge step for biotechnology, because most types of research require billions of copies of a molecule under investigation. However, there was a limitation: researchers need to change the DNA molecules in precise ways and for large molecules, such as whole genes, this was tremendously difficult.

Stewart and his colleagues thought that bacteria could be taught to do better, so they "borrowed" a strategy that organisms such as mice and yeast use to repair breaks in DNA. Proteins called recombinases circulate through their cells, looking for loose DNA fragments that have familiar sequences.



"Recombinases assume that the fragments have been cut out of the DNA by mistake, so they try to glue them back into the genome in the right place," says Giuseppe Testa, who headed the current study. "Sometimes they’re a bit over-industrious; they put in pieces that look right, such as variations of a gene that have been put into the cell by a researcher."

Called homologous recombination, this process works a bit like a "find-and-replace" command in your word processor. Imagine you have typed "Stephen Q. Gould" everywhere, and suddenly discover that the middle initial should be "J". The computer can be told to look for "Stephen" and "Gould" and replace what comes between them. In the same way, recombinases find recognizable sequences of DNA to the left and right of a target and replace what comes in between with the new sequence.

Homologous recombination was known to occur in bacteria, but it hadn’t been possible to use it to engineer DNA, as was the case in yeast and mouse stem cells. Stewart?s team decided to try to find a strain that could do it. "We ordered as many types of E. coli as we could, looking for defects in the way they repair their DNA," he says. "After five months of work, Youming Zhang, a postdoc in the lab, found the strain."

The group quickly identified the bacterial factors involved and turned them into a new tool called Red/ET recombination that is now being adopted by biologists all over the world. It’s one of the mainstays of Gene Bridges GmbH, a company that Stewart and his colleagues founded with EMBL to develop the commercial implications of the breakthrough.

"We have been pushing it to work with larger and larger bits of DNA," Testa says, "and our latest project has been to engineer an entire artificial chromosome in bacteria. We’ve constructed a large, complex ’cassette’ that we’ve now inserted into a mouse in place of its normal gene."

The gene that they chose is called mixed-lineage leukemia (Mll), and is known to become defective in childhood leukemias in humans. By inserting the artificial version into the mouse, researchers hope to understand how the defects lead to disease. "There are many things that can go wrong in this gene," Testa says, "and we wanted to construct a version of it that would allow us to test as many aspects of the problem as possible."

The artificial Mll that they have put into the mouse will permit a variety of experiments. It contains two defects in the genetic sequence that have been linked to leukemias. The cassette also contains control switches that allow each defect to be "switched on" whenever the researchers choose; they can also be left off. "We can study each mutation independently, or watch how they act together, or control the time at which each one acts," Testa says. "This will give us a new look at subtle relationships between multiple defects."

Many diseases are linked to single mutations; however, disease susceptibility also often relies on other sequence variations, known as polymorphisms, in the human population. "The Mll cassette shows, in principle, a simple way to study both a mutation and a related polymorphism in the gene of interest," Testa says. "This aspect of making mouse models will become increasingly more important for authentic modeling of human disease susceptibility and the way organisms respond to drugs and we think that our work shows the way to set up these models".

The new work also heralds a new era for genomic engineering in many living systems. "The Mll cassette is a first demonstration of what can be done with large DNA molecules," Stewart says. "Red/ET recombination increases the size of DNA that can be comfortably engineered by more than ten times and opens up new possibilities for genomic engineering that will filter into standard practice in the next few years."

Russ Hodge | EurekAlert!
Further information:
http://www.embl-heidelberg.de/

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>