Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold "Nanoplugs" Wire Up Enzymes

21.03.2003


Atomic model of a glucose oxidase enzyme molecule. This enzyme oxidizes glucose and produces electrons that can be channeled into an electrode through a gold nanoparticle connection. This system can be used to better detect glucose for diabetic patients. The technique might also be applied in the rapid and inexpensive detection of pollutants, infections, disease markers, or agents of bioterrorism


Three molecules of glucose oxidase, two wired with gold nanoparticles (yellow, indicated by arrows), visualized with the scanning transmission electron microscope (STEM) in Brookhaven Lab’s biology department


Could yield biosensors with greater sensitivity, specificity

Scientists at Hebrew University, Israel, in collaboration with researchers at the U.S. Department of Energy’s Brookhaven National Laboratory, have devised a way to use gold nanoparticles as tiny electrical wires to plug enzymes into electrodes. The gold “nanoplugs” help align the molecules for optimal binding and provide a conductive pathway for the flow of electrons. The research, described in the March 21, 2003, issue of Science, may yield more sensitive, inexpensive, noninvasive detectors for measuring biological molecules, including, potentially, agents of bioterrorism.

The idea behind the technology, says Brookhaven biologist Jim Hainfeld, who developed the gold nanoparticles and the means of attaching them to other molecules, is to measure the current as an indicator of the number of biological molecules involved in the reaction.




Atomic model of a glucose oxidase enzyme molecule. This enzyme oxidizes glucose and produces electrons that can be channeled into an electrode through a gold nanoparticle connection. This system can be used to better detect glucose for diabetic patients. The technique might also be applied in the rapid and inexpensive detection of pollutants, infections, disease markers, or agents of bioterrorism.


One potential application, developed by the Hebrew University collaborators, is to use sensors made from the enzyme-electrode system to measure blood glucose in diabetic patients. In the Science paper, the authors describe how they used gold nanoparticles to attach a glucose-oxidizing enzyme to an electrode, and then used this bioelectrocatalytic system to measure glucose levels.

“The gold nanoparticle —1.4 nanometers, or billionths of a meter, in diameter — plays two very important roles,” says Hainfeld. “First, it specifically orients the binding of the enzyme to the electrode so it’s a very ordered attachment, not random. Second, since gold is a conductor, it provides an electrical path for the flow of electrons.”

When the enzyme oxidizes glucose, electrons flow through the gold nanoparticle into the electrode: The higher the current, the higher the level of glucose.

The experimental results indicate that current flowed seven times faster with the “plugged-in” enzyme system than with the normal enzyme using oxygen as an electron acceptor. Previous attempts to wire the enzyme to an electrode have resulted in lower than normal rates. Higher flow rates increase the ability of sensors made from such a system to detect lower quantities of glucose.

Another important finding was that the measurement of glucose using the plugged-in enzyme-nanoparticle system was not affected by the levels of other substances that can interfere with accurate glucose readings, such as oxygen and ascorbic acid, which is frequently a problem with other biosensors.


Three molecules of glucose oxidase, two wired with gold nanoparticles (yellow, indicated by arrows), visualized with the scanning transmission electron microscope (STEM) in Brookhaven Lab’s biology department.

This increased sensitivity and specificity could improve the next generation of glucose-monitoring sensors, particularly those that measure glucose without piercing the skin, which rely on detecting trace quantities.

The plugged-in enzyme technique is not limited to glucose detection. “Many other substances could be attached to electrodes in this way and used to sensitively and easily detect other biological molecules, such as bioterrorism agents or other disease markers,” Hainfeld said.

And because such sensors would be intrinsically simple, containing just a few molecules and an electrode, they would be very compact, inexpensive, and disposable.

The Brookhaven researchers were primarily involved in developing the methods for producing and attaching gold nanoparticles to other molecules, and confirming their presence in the glucose-oxidizing enzyme complex using Brookhaven’s scanning transmission electron microscope. The researchers at Hebrew University used these tools to make the improved biosensors by labeling the enzyme, wiring it to electrodes, and measuring its activity. Brookhaven’s role in the work was funded by the National Institutes of Health and the U.S. Department of Energy, which supports basic research in a variety of scientific fields.

Karen McNulty Walsh | DOE/BNL
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2003/bnlpr032003.htm

More articles from Life Sciences:

nachricht Selectively Reactivating Nerve Cells to Retrieve a Memory
01.06.2020 | Universität Heidelberg

nachricht CeMM study reveals how a master regulator of gene transcription operates
01.06.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>