Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified molecules contribute to normal silencing of most human genes

10.03.2003


Connections seen to X-linked mental retardation and some forms of leukemia



Most of the time, most of the estimated 35,000 genes in the human genome are silent, securely stored away in the tightly coiled structure of chromatin, which makes up chromosomes. Inside chromatin, the DNA is wound around small proteins called histones, making it unavailable to the cellular machinery that would otherwise read its coded genetic information. Specific cell and tissue types are characterized by the carefully controlled activation of selected sets of signature genes.

Now, a team of researchers at The Wistar Institute reports discovery of a family of molecular complexes involved in the repression of extensive sets of tissue-specific genes throughout the body. Additionally, one member of the family involved in repressing brain-specific genes in other types of tissues has been found to include a gene thought to be responsible for X-linked mental retardation when mutated. Other components of these complexes have been associated with certain forms of leukemia.


The new study appears in the current issue of the Journal of Biological Chemistry.

"One of the mysteries of gene expression is how different tissues in the body -heart, liver, brain - express the genes that are specific to them," says Ramin Shiekhattar, Ph.D., senior author on the report and an associate professor at The Wistar Institute. "What really controls this? For a long time, people have been looking for the factors that activate these genes, but what we and others are learning is that the critical mechanism used to regulate entire sets of genes is actually repression.

"In some ways, it’s like driving a car. You may not realize much driving relies on braking rather than acceleration. Without the brake, you can’t control the car."

The new findings may have relevance for understanding diseases characterized by uncontrolled or inappropriate gene activation and growth, with cancer perhaps the most significant of these.

The newly discovered molecular complexes share two core subunits and appear to operate as co-repressors with a number of tissue-specific repressor molecules to maintain the gene-silencing structure of chromatin.

One of the shared subunits is a type of enzyme, a so-called histone deacetylase, or HDAC, known to repress gene activation by modifying chromatin structure in specific ways. The second core subunit shared by these new complexes is called BHC110. This component, too, appears to be an enzyme, Shiekhattar says, although its specific activity remains to be determined.

Biochemical assays showed that BHC110 and the HDAC enzyme were both present in up to ten other unique complexes likely be involved in gene repression. Current experiments are aimed at learning more about the function of these two shared components of the complexes, and also at learning more about the components unique to each complex.

The equally contributing lead authors on the Journal of Biological Chemistry study are Mohamed-Ali Hakimi, Ph.D., and Yuanshu Dong, both at The Wistar Institute. William S. Lane at Harvard University collaborated on the study, as did Wistar professor David W. Speicher, Ph.D.


This research was supported by grants from the National Institutes of Health and the American Cancer Society.

The Wistar Institute is an independent nonprofit biomedical research institution dedicated to discovering the causes and cures for major diseases, including cancer, cardiovascular disease, autoimmune disorders, and infectious diseases. Founded in 1892 as the first institution of its kind in the nation, The Wistar Institute today is a National Cancer Institute-designated Cancer Center - one of only eight focused on basic research. Discoveries at Wistar have led to the development of vaccines for such diseases as rabies and rubella, the identification of genes associated with breast, lung, and prostate cancer, and the development of monoclonal antibodies and other significant research technologies and tools.

News releases from The Wistar Institute are available to reporters by direct e-mail or fax upon request. They are also posted electronically to Wistar’s home page (http://www.wistar.upenn.edu), and to EurekAlert! (http://www.eurekalert.org), an Internet resource sponsored by the American Association for the Advancement of Science.


Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu/

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>