Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal ions may play big role in how we sense smells

27.02.2003


Of the five basic senses, the sense of smell is the least understood. Now, scientists at the University of Illinois at Urbana-Champaign have sniffed out potential clues to how olfactory receptors in the nose detect odors. Those clues may also explain why dietary zinc deficiencies lead to a loss of smell.

Olfactory receptors are proteins that bridge through the cell membrane. Professor Kenneth S. Suslick and co-workers have found that the structure of the protein changes dramatically when a zinc or copper ion binds to it. They propose that the olfactory response to an odorant involves this change in structure that pushes and pulls part of the olfactory receptor protein into and out of the cell in a "shuttlecock" motion. This back-and-forth motion passes information through the cell membrane. The researchers will report their findings in the Proceedings of the National Academy of Sciences. A paper on the subject is to appear in the PNAS Online Early Edition the week of Feb. 24.

The average human nose can detect nearly 10,000 distinct scents, a feat that requires about 1,000 olfactory genes, or roughly 3 percent of the human genome.



"It seems surprising that such a large percentage of our genome is dedicated to the olfactory system," said Suslick, a William H. and Janet Lycan Professor of Chemistry at Illinois. "Being visually oriented and olfactorily impaired, we tend to overlook our sense of smell. But other mammals, like dogs and rats, live or die by their sense of smell."

Knowing that molecules that bind strongly to metal ions usually smell strongly (and often badly), Suslick and his colleagues -- chemistry professor Zaida A. Luthey-Schulten and doctoral student Jiangyun Wang -- investigated the possibility that olfactory receptors are metalloproteins (proteins that contain a metal ion as part of their structure).

Inorganic chemists have long suspected that the olfactory system involved metal ions. Only recently, however, have the genes responsible for smell been identified. "When we searched the genome data, we found an identical site in more than 75 percent of the olfactory receptors that looks like it can bind to metal ions very strongly," Suslick said.

The structure of these receptors is thought to be a protein that weaves in and out of the cell membrane seven times. Between the fourth and fifth helices, the scientists found an uncommonly long loop that they suspected contained the binding site for a metal ion.

To test their theory, the researchers created synthetic peptide analogs of the potential binding site in the receptor protein. As predicted, metal ions -- particularly zinc and copper -- were bound very strongly.

The researchers then used computer models to study the behavior of olfactory receptors upon odorant binding. "Computer simulations initially put this big loop outside the cell membrane because the loop is negatively charged," Suslick said. "When a positively charged metal ion binds to the site, however, the loopÕs charge is neutralized, so the computer places the loop in the membrane."

When the long loop containing the metal ion slides into the cell membrane, a portion of the receptor protein’s fourth helix is pushed outside the membrane, Suslick said. When an odorant binds to the metal ion, the loop is ejected from the membrane, and the fourth helix is dragged back in, triggering a sequence of events leading to nerve cell activity. Then, when the odorant leaves the metal ion, the process can start over.

This back and forth movement of the protein, which the researchers refer to as a shuttlecock motion, may be a new mechanism for passing information through cell membranes.

"Another piece to this puzzle is that one of the first symptoms of dietary zinc deficiency is loss of the sense of smell," Suslick said. "That, too, is keeping with this idea that the olfactory receptors are metalloproteins."

James E. Kloeppel | UIUC
Further information:
http://www.uiuc.edu/
http://www.news.uiuc.edu/scitips/03/0221olfactory.html

More articles from Life Sciences:

nachricht Why developing nerve cells can take a wrong turn
04.06.2020 | Universität zu Köln

nachricht Innocent and highly oxidizing
04.06.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>