Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fly mutation suggests link to human brain disease

21.02.2003


Greater insight into human brain disease may emerge from studies of a new genetic mutation that causes adult fruit flies to develop symptoms akin to Alzheimer’s disease.

“This is the first fruit fly mutant to show some of the outward, physical manifestations common to certain major human neurodegenerative diseases,” said principal investigator Michael McKeown, a biology professor at Brown University.

A research team found the mutation in a gene they named “blue cheese.” Reporting in the Feb. 15 issue of the Journal of Neuroscience, the researchers describe blue cheese mutations that lead normal-appearing adult flies (genus Drosophila) to die early from extensive cell death in the brain, neural degeneration, and build-up of protein aggregates.



“These aggregates contain the Drosophila version of proteins that are the major components of plaques that form in the brains of human Alzheimer’s patients,” said the study’s lead author, biologist Kim D. Finley, of the Salk Institute for Biological Studies. “The presence of these proteins in human plaques is at times used as a diagnostic tool for Alzheimer’s disease.”

Genes first identified in Drosophila are often named for a mutant characteristic, said Finley. “The first obvious feature that we noted in older mutant flies was the slow accumulation of dark protein aggregates throughout the brain,” she said. “This reminded us of moldy versions of marbled and veined cheeses, thus the name blue cheese.”

The protein encoded by blue cheese also identifies a new family of proteins present in humans and other vertebrates, as well as in flies, said McKeown. “Our work on blue cheese not only identifies a gene needed for adult neural survival, it also allows identification of the members of this new family,” he said.

Similar blue cheese genes are found in species ranging from worms to humans. The protein encoded by blue cheese – the “blue cheese protein” – may be involved in transport or degradation of proteins and in other brain functions, said the researchers. Fruit flies have similar, yet fewer genes, compared to humans. One of the quickest ways to learn about potential effects of genetic mutations in humans is to screen and sample mutant fly genes.

“Drosophila models have been developed that mimic many aspects of human neural degeneration, primarily by expression of mutant proteins known to cause disease in humans,” said Finley. “In turn these models have been used to identify additional genes involved with the degenerative process, allowing new insights that may result in potential treatments of these disorders.”

In many aspects of gene regulation, growth, differentiation and cell function, Drosophila and human proteins appear very similar and have highly similar actions, said McKeown.

“These observations alone suggest a high likelihood that alterations in human blue cheese will contribute to some degenerative disorders in humans,” he said. In fact, “analysis of the human genetic map shows that blue cheese gene is in a region associated with several familial neurodegenerative diseases,” said McKeown.

For information from the Salk Institute for Biological Studies, contact Robert Bradford, senior director for communications, at (858) 453-4100, ext. 1290, or bradford@salk.edu.

The study was funded by grants from the National Institutes of Health.

Scott Turner | Brown University
Further information:
http://www.brown.edu/Administration/News_Bureau/2002-03/02-068.html

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>