Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Montreal Neurological Institute Researcher First to Discover That Normal Nerve Cells Can Mimic Viruses

20.02.2003


Montreal Neurological Institute researcher Dr. Wayne Sossin has discovered that nerve cells can bypass the cell’s normal protein-making machinery in the same way that viruses do when they infect a cell. In a study published on-line today in Nature Neuroscience, Dr. Sossin and colleagues describe the first example of regulated IRES (internal ribosome entry site) usage after a physiological stimulus in neurons.

When a virus infects a cell, its goal is to make more virus particles. To do this, a virus takes over the cell’s protein making machinery (the ribosome), so that the cell essentially becomes a viral protein factory. It does this by using an internal ribosome entry site (IRES); which shuts down and bypasses the normal mechanisms that regulate binding of messenger RNAs to ribosomes. While many viral messenger RNAs are known to possess an IRES, few normal cellular RNAs do. Abnormal IRES regulation has been correlated with two human diseases- multiple myeloma and Charcot-Marie-Tooth disease. This is the first time that scientists have demonstrated that normal nerve cells can use an IRES to produce large quantities of protein under physiological conditions.

Dr. Sossin and colleagues made their discovery in a study of egg laying in the sea slug Aplysia. During egg laying, protein production of the egg laying hormone (ELH) increases dramatically. Sossin and colleagues discovered that the ELH messenger RNA contains an IRES. They demonstrated that after egg laying, nerve cells producing ELH switch from the normal cellular mechanism of protein production to one that uses the IRES. This switch allows for massive amounts of ELH protein to be produced at the expense of other cellular proteins, mimicking what a virus does when it infects a host cell.



“Egg laying is an important investment for an animal, thus when stimulated to do so, it wants to get it right,” explained Dr. Sossin. “In order to do this, the cell must make a lot of ELH protein in a short period of time to signal the release of eggs. One way to do this is to temporarily stop making other proteins and concentrate on making one particular protein – in this instance, the ELH.”

“The new discovery of Dr. Sossin reveals an unexpected regulatory role of the IRES in nerve cells. This finding could have important implications for understanding the learning and memory processes in the brain” explained Dr. Nahum Sonenberg, Department of Biochemistry at McGill University, who first discovered the IRES in poliovirus in 1988. Other non-pathological uses of IRES regulated protein production could include production of hormones or growth factors.

Dr. Sossin’s paper, An Activity-dependent switch to cap-independent translation triggered by eIF4E dephosphorylation, can be viewed on-line at Nature Neurscience.

Dr. Wayne Sossin, a scientist at the Montreal Neurological Institute, is an Associate Professor of Neurology and Neurosurgery and Anatomy and Cell Biology at McGill University. Dr. Sossin obtained his S.B. (Biology) and S.B. (Computer Science) in 1984 from MIT. He completed his Ph.D. in 1989 at Stanford University and conducted his Postdoctoral research at Columbia University. Dr. Sossin’s research has led to several fundamental principles of protein processing and packaging in neurons. He is the author of more than 40 scientific publications.



The Montreal Neurological Institute (www.mni.mcgill.ca) is a McGill University (www.mcgill.ca) research and teaching institute, dedicated to the study of the nervous system and neurological diseases. Since its founding in 1934 by the renowned Dr. Wilder Penfield, the MNI has helped put Canada on the international map. It is one of the world’s largest institutes of its kind; MNI researchers are world leaders in biotechnology, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders.



For further information or to interview Dr. Sossin, please contact:
Sandra McPherson
Montreal Neurological Institute
3801 University Street
Montreal, QC H3A 2B4

Tel: (514) 398-1902
Fax: (514) 398-8072
Email: sandra.mcpherson@mcgill.ca

Sandra McPherson | McGill University
Further information:
http://www.mni.mcgill.ca/announce/sossin_e.htm
http://www.mni.mcgill.ca

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>