Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals defy species classification

18.02.2003


Classifying corals in terms of species is a risky business. Biologist Onno Diekmann from the University of Groningen has discovered that four species of stone corals differ so little in terms of their genetic material that they can scarcely be termed separate species.



Corals are formed by a collection of identical coral polyps which together form a coral colony. Onno Diekmann compared the genetic material from six different species of coral from the Madracis genus, which are found in the coral reefs around Curaçao. The coral exists in many different physical forms. There are knobby, branched and crust-forming colonies. The corals grow at depths varying from 2 to 70 metres. The external appearance is partly determined by the environmental conditions, such as temperature, water movements and the amount of available light. Therefore, it is difficult to determine if two coral colonies belong to the same species, if only the external appearance is used.

Two forms of Madracis were found to be clearly distinct species. Yet four other species exhibited a considerable overlap in the genetic variation. Therefore, which of the four species these corals belong to cannot be determined with any certainty. The spectrum of intermediate forms indicates that these four species can interbreed. However, the four species do differ in their physical appearance. In addition to the colony form there are also smaller characteristics where differences might be exhibited. Yet none of the individual microcharacteristics can be used to unequivocally determine which species an individual coral belongs to. For this several characteristics need to be analysed at the same time.


It is difficult to apply the term ’species’ to corals. Perhaps this is because they are found in the ocean where physical barriers to reproduction between different species are not or are scarcely present. The ocean currents determine the direction in which a species can be moved. Due to sea level changes the ocean current patterns are highly variable as a result of which the mixing of various coral ’species’ can continually occur.

For corals where fertilisation and development of the larvae takes place in water, it was already known that differences between species can be sufficiently small to allow interbreeding to take place with the production of fertile offspring. This research on Madracis has demonstrated that corals which reproduce by internal fertilisation and the hatching of offspring can also interbreed.



For further information please contact Onno Diekmann (Department of Marine Biology, University of Groningen), tel +31 (0)50 3632226, fax +31 (0)50 3632261, e-mail: o.e.diekmann@biol.rug.nl. The defence of the doctoral thesis will take place on 27 February 2003. Mr Diekman’s supervisor is Prof. R.P.M. Bak.

Image at www.nwo.nl/nieuws

The research was funded by the Netherlands Organisation for Scientific Research (NWO).


Nalinie Moerlie | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>