Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect Antibiotics - Resistance is Futile!

07.02.2003


Insect Antibiotic, Cecropin A, Bypasses Outer Defenses to Kill Bacteria From The Inside

For antibiotics, the best way to beat bacterial defenses may be to avoid them altogether. Researchers at University of Pennsylvania School of Medicine have discovered that Cecropin A, a member of a family of antibiotic proteins produced by insects, may kill bacteria and avoid resistance by entering bacterial cells and taking control of their genetic machinery.

While most antibiotics kill bacteria by attacking critical enzyme systems, Cecropin A somehow slips inside the bacteria and turns specific genes on and off. The findings challenge conventional thinking on how these antibiotics function, and may aid in turning antimicrobial peptides like Cecropin A into therapeutic agents.



"For decades, researchers have studied Cecropin A and focused on its obvious effects against bacterial cell walls and membranes. These antibiotics certainly do disrupt outer structures of the bacterial cell, but there’s much more to the story," said Paul H. Axelsen, M.D., an associate professor in the Department of Pharmacology and Division of Infectious Diseases at Penn. "Before the bacterial cell dies, Cecropin A enters the cell and alters the way its genes are regulated. It’s like sneaking over the castle wall and opening the gates from the inside. We need to understand this mechanism of action because it may explain why bacteria are unable to develop resistance to this family of antibiotics."

Axelsen’s findings were described in the January issue of the Antimicrobial Agents and Chemotherapy, a publication of the American Society for Microbiology. In their study, Axelsen and his colleagues treated E. coli with small doses of Cecropin A - not enough to kill the bacteria, but enough to see what genes are affected when bacteria are exposed to the antibiotic. They found that transcript levels for 26 genes are affected, 11 of which code for proteins whose functions are unknown. Even more surprising for the researchers, the genes are not the same as the ones affected when bacteria experience nutritional, thermal, osmotic, or oxidative stress.

"It is a whole different mechanism by which to kill bacteria, and one that we still have yet to completely figure out," said Axelsen. "How Cecropin A turns these genes on and, indeed, how it gets inside E. coli in the first place, is still something of a mystery."

Despite years of research, there remains much to know about the antibiotics produced by insects. Cecropin A was discovered in the Cecropia moth, also known as the silkworm moth, the largest moth in North America. Since insects do not have an immune system as humans do, they rely on polypeptide antibiotics like Cecropin A to fight off infections. These proteins are highly selective - they readily kill bacteria, but are harmless to human and other animal cells. Moreover, bacteria that are susceptible initially stay susceptible - researchers have not seen bacteria develop resistance to their action. For this reason, these antibiotics offer a potentially invaluable model for new therapeutic agents.

"We’re engaged in an arms race against infectious bacteria. With each new antibiotic, bacteria have found a way to evolve resistance - primarily by slightly altering cellular enzymes," said Axelsen. "Bacteria may be unable to alter their genetic machinery, and this may explain why strains of bacteria resistant to Cecropin A do not arise."

Funding for this research was supported by grants from the National Institutes of Health and the American Heart Association, and from Affymetrix’s generous donation of E. coli GeneChip Microarrays.

Greg Lester | University of Pennsylvania Medic
Further information:
http://health.upenn.edu/News/News_Releases/feb03/Insects.html

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>