Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL expands blood serum protein library

19.12.2002


In a significant scientific advance, researchers at the Department of Energy’s Pacific Northwest National Laboratory have identified or confirmed 490 proteins in human blood serum — nearly doubling the number of known serum proteins, according to a paper accepted for publication in the December issue of Molecular and Cellular Proteomics.


Using liquid chromatography and mass spectrometry instrumentation, Pacific Northwest National Laboratory scientists identified and characterized nearly twice as many proteins in blood serum than previously noted, which provides a greater library of proteins to study for potential use in disease diagnosis.



“We have performed the most extensive identification of proteins in serum to date,” said Joel Pounds, corresponding author and a PNNL staff scientist. “We studied blood serum because it holds clues to all the major processes in our bodies. We need to know what proteins exist in that serum to know how they might be used to predict disease susceptibility, monitor disease progression or diagnose disease.”

These clues include proteins that “leak” from dead and dying cells, and proteins secreted into blood or released from tumors. Identifying these proteins allows scientists to conduct additional studies to define each protein’s functional role in cells and the body.


The scientific community has studied plasma, the parent component to serum, for more than a hundred years. Recent studies have primarily utilized a technique called two-dimensional gel electrophoresis to study proteins found in plasma, yet this method is limited in its ability to identify proteins that exist in small amounts, known as low-abundance proteins, and is labor intensive. The identification of low-abundance proteins is important as many of these proteins often function as “messengers” that inform cells to turn signaling pathways on or off — such functions are central to cell death or disease development.

“After a long period of slow progress, research on the plasma proteome has begun a period of explosive growth attributable to new multidimensional fractionation methods,” said N. Leigh Anderson, founder and chief executive officer of The Plasma Proteome Institute (www.plasmaproteome.org). “PNNL’s work is an important early demonstration of the power of these methods, and suggests that hundreds, if not thousands, of new candidate markers will be found.”

Studying the proteome of blood serum was a natural fit for scientists at PNNL, which has a strong proteomics capability. A proteome is the collection of proteins expressed by a cell under a specific set of conditions at a certain time. Through its Biomolecular Systems Initiative, the laboratory is supporting multidisciplinary research in systems biology. Scientists have developed unique technologies that allow for more thorough analysis of proteins and have studied the proteome of ovarian cancer as well as other disease states.

Pounds and his team, which included lead author and post-doctoral researcher Joshua Adkins, used chromatography and mass spectrometry instead of the more traditional 2-D gel electrophoresis to identify proteins, including low-abundance proteins not previously identified in serum and proteins with an unknown function. Their overall analysis was conducted on a single human blood serum sample from a healthy anonymous female donor.

The majority of serum protein consists of a few, very abundant proteins. One of the current challenges in the field is that the presence of abundant proteins obscures the measurement of many low-abundance proteins, and that removal of these abundant proteins may result in the simultaneous removal of low-abundance proteins. Here, Pounds and his team kept those abundant proteins, but simplified the mass spectrometry by fractionating the peptides according to charge state.

Once fractionated to allow for the analysis of lower abundance proteins, the samples were analyzed using a mass spectrometer that had been programmed to concentrate on specific ranges of peptide size during several analyses, thereby providing a more complete analysis of the proteome. The researchers employed powerful mass spectrometers housed in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national user facility located at PNNL.

The sample preparation and analysis approach allowed PNNL scientists to expand the range of proteins that could be identified. For example, prostate-specific antigen (PSA) was identified in the sample using this approach. The reference value for PSA is in extremely low abundance in women, along the order of less than 1 picogram per milliliter. Detecting its presence provided a control to learn how well PNNL’s approach identified low-abundance proteins.

“With this study, we have taken a large step toward defining the protein composition of serum,” Pounds said. “But many more steps and technological improvements are needed to move beyond these 490 proteins to the thousands of proteins that may be present in blood serum.”

Molecular and Cellular Proteomics is a new journal distributed by the American Society for Biochemistry and Molecular Biology. Pounds’ paper is available online at http://www.mcponline.org/cgi/reprint/M200066-MCP200v1.pdf. A recent paper authored by Anderson and appearing in this journal also is available online at http://www.mcponline.org/cgi/reprint/R200007-MCP200v1.pdf.

Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov. PNNL’s Biomolecular Systems Initiative is online at http://www.biomolecular.org.

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated the laboratory for DOE since 1965.

Staci Maloof | EurekAlert!
Further information:
http://www.mcponline.org/cgi/reprint/M200066-MCP200v1.pdf
http://www.mcponline.org/cgi/reprint/R200007-MCP200v1.pdf
http://www.biomolecular.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>