Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganism isolated in space

17.12.2002


How far up into the sky does the biosphere extend? Do microorganisms exist at heights of 40 km and in what quantity? To answer these questions several research institutes in India collaborated on a path-breaking project to send balloon-borne sterile "cryosamplers" into the stratosphere. The programme was led by cosmologist Professor Jayant Narlikar, Director of the Inter University Centre for Astronomy and Astrophysics in Pune, with scientists at the Indian Space Research Organisation and the Tata Institute of Fundamental Studies contributing their various expertise.



Large volumes of air from the stratosphere at heights ranging from 20 to 41km were collected on 21 January 2001. The programme of analysis of samples in the UK was organised by Professor Chandra Wickramasinghe of Cardiff University, co-proponent with the late Sir Fred Hoyle of the modern theory of panspermia. This theory states that the Earth was seeded in the past, and is still being seeded, with microorganisms from comets.

Last year a team of biologists at Cardiff University’s School of Biosciences reported evidence of viable bacteria in air samples at 41km in such quantity that implied a world-wide settling rate of one tonne of bacterial material per day. Although living bacteria were seen they could not be grown in the laboratory. Dr Milton Wainwright of Sheffield University’s Department of Molecular Biology and Biotechnology, was asked to apply his skills to growing the organisms. Dr Wainwright isolated a fungus and two bacteria from one of the space derived samples collected at 41km. The presence of bacteria in these samples was then independently confirmed. These results are published in this month’s issue of a prestigious microbiology journal FEMS Letters (Wainwright et al, 2002), published by Elsevier. The isolated organisms are very similar to known terrestrial varieties. There are however notable differences in their detailed properties, possibly pointing to a different origin. Furthermore, it should be stressed that these microorganisms are not common laboratory contaminants.


Dr Wainwright says, however, "Contamination is always a possibility in such studies but the "internal logic" of the findings points strongly to the organisms being isolated in space, at a height of 41km. Of course the results would have been more readily accepted and lauded by critics had we isolated novel organisms, or ones with NASA written on them! However, we can only report what we have found in good faith".

The new work of Wainwright et al is consistent with the ideas of Hoyle and Wickramasinghe that in fact predict the continuing input onto the Earth of "modern" organisms. In recent years and months there has been a growing body of evidence that can be interpreted as support for the theory of panspermia - e.g. the space survival attributes and general space hardiness of bacteria.

Chandra Wickramasinghe | EurekAlert!
Further information:
http://www.cardiff.ac.uk/

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>