Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass scientist identifies gene that governs obesity, physical activity, sex behaviors in mice

10.12.2002


Findings based on ’knock-out’ mice detailed in the journal Physiology and Behavior



A team led by University of Massachusetts Amherst researcher Deborah J. Good has identified a gene that appears to play a role in obesity, physical activity, and sex behaviors in mice. Good works with so-called "knock-out" mice, which have a specific gene deleted. Scientists then monitor the animals for changes in their physiology and behavior, in an effort to determine the gene’s role. Her findings are detailed in the current issue of the journal Physiology and Behavior. The project is funded with a four-year, $1 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases, and a two-year, $70,000 grant from the National Institute of Child Health and Human Development, both of the National Institutes of Health.

Good is studying the mechanisms in the brain and nervous system that regulate appetite and body weight. Although more than 20 genes have been implicated in the regulation of body weight, the mechanisms through which these genes work remain unclear, she says. Recent evidence by Good suggests that a gene called Nhlh2 plays a key role in the regulation of genes controlling body weight, as well as physical activity levels and mating behavior.


"The knock-out mice can weigh up to 100 grams or more, while most normal mice weigh 25 to 30 grams. Thus, the knock-outs are the equivalent of a 450-pound person," Good says. Two issues contribute to their obesity: the all-too-familiar diet and exercise factors. The mice eat far past what should be the point of satiety, and show a marked disinterest in running on an exercise wheel. "Most mice love to run on a little exercise wheel when you put it in their cage," notes Good, "but not these guys. They run less than other mice before they become obese. Once they do put the extra weight on, their decreased physical activity contributes to their weight gain even more than their food intake."

But these mice can legitimately blame their weight on their genes – or rather, their lack of the Nhlh2 gene. "The gene is responsible for giving them the message, ’You’re full, so stop eating,’ or ’You need to increase your activity, so get some exercise.’" Without Nhlh2, the message is sent but can’t be received on a molecular level, so their body weight continues to increase, Good explains. "It’s as if someone is sending you e-mail, but you’re not reading the message. The message has been sent, but it’s not useful."

"There are humans who have this mutation," notes Good. "If we understand the molecular mechanisms that deal with obesity, perhaps we’ll be able to develop pharmaceuticals for people whose enzyme activity is offset." She also notes that humans can be coached to increase their exercise levels and lower their food intake.

In addition, the gene deletion appears to affect sex behaviors. The knock-out mice have a smaller genital size and lower sperm counts than typical mice. In addition, they show disinterest in mating when they share a cage with a receptive female. (They are able to produce offspring through in vitro methods.) Good cautions that the findings may not be analogous in human beings, in terms of infertility. "We don’t know what would happen in humans," Good says. "There might be fertility problems, but human sex behavior is greatly affected by sociological and cultural expectations that certainly aren’t a factor among mice."

In a related project, Good is studying the molecular control of male reproduction. Although more than 16 specialized proteins are implicated in controlling fertility, the molecular mechanisms of reproduction remain unclear, Good says. She and her team are working toward understanding the molecular control of reproduction and fertility by a specific gene known as Nhlh2.


Note: Deborah Good can be reached at 413/545-5560 or goodd@vasci.umass.edu

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>