Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass scientist identifies gene that governs obesity, physical activity, sex behaviors in mice

10.12.2002


Findings based on ’knock-out’ mice detailed in the journal Physiology and Behavior



A team led by University of Massachusetts Amherst researcher Deborah J. Good has identified a gene that appears to play a role in obesity, physical activity, and sex behaviors in mice. Good works with so-called "knock-out" mice, which have a specific gene deleted. Scientists then monitor the animals for changes in their physiology and behavior, in an effort to determine the gene’s role. Her findings are detailed in the current issue of the journal Physiology and Behavior. The project is funded with a four-year, $1 million grant from the National Institute of Diabetes and Digestive and Kidney Diseases, and a two-year, $70,000 grant from the National Institute of Child Health and Human Development, both of the National Institutes of Health.

Good is studying the mechanisms in the brain and nervous system that regulate appetite and body weight. Although more than 20 genes have been implicated in the regulation of body weight, the mechanisms through which these genes work remain unclear, she says. Recent evidence by Good suggests that a gene called Nhlh2 plays a key role in the regulation of genes controlling body weight, as well as physical activity levels and mating behavior.


"The knock-out mice can weigh up to 100 grams or more, while most normal mice weigh 25 to 30 grams. Thus, the knock-outs are the equivalent of a 450-pound person," Good says. Two issues contribute to their obesity: the all-too-familiar diet and exercise factors. The mice eat far past what should be the point of satiety, and show a marked disinterest in running on an exercise wheel. "Most mice love to run on a little exercise wheel when you put it in their cage," notes Good, "but not these guys. They run less than other mice before they become obese. Once they do put the extra weight on, their decreased physical activity contributes to their weight gain even more than their food intake."

But these mice can legitimately blame their weight on their genes – or rather, their lack of the Nhlh2 gene. "The gene is responsible for giving them the message, ’You’re full, so stop eating,’ or ’You need to increase your activity, so get some exercise.’" Without Nhlh2, the message is sent but can’t be received on a molecular level, so their body weight continues to increase, Good explains. "It’s as if someone is sending you e-mail, but you’re not reading the message. The message has been sent, but it’s not useful."

"There are humans who have this mutation," notes Good. "If we understand the molecular mechanisms that deal with obesity, perhaps we’ll be able to develop pharmaceuticals for people whose enzyme activity is offset." She also notes that humans can be coached to increase their exercise levels and lower their food intake.

In addition, the gene deletion appears to affect sex behaviors. The knock-out mice have a smaller genital size and lower sperm counts than typical mice. In addition, they show disinterest in mating when they share a cage with a receptive female. (They are able to produce offspring through in vitro methods.) Good cautions that the findings may not be analogous in human beings, in terms of infertility. "We don’t know what would happen in humans," Good says. "There might be fertility problems, but human sex behavior is greatly affected by sociological and cultural expectations that certainly aren’t a factor among mice."

In a related project, Good is studying the molecular control of male reproduction. Although more than 16 specialized proteins are implicated in controlling fertility, the molecular mechanisms of reproduction remain unclear, Good says. She and her team are working toward understanding the molecular control of reproduction and fertility by a specific gene known as Nhlh2.


Note: Deborah Good can be reached at 413/545-5560 or goodd@vasci.umass.edu

Elizabeth Luciano | EurekAlert!
Further information:
http://www.umass.edu/

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>