Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At that star, turn left!

17.10.2002


Our bodies contain proteins that are made of smaller molecules that can be either left- or right-handed, depending upon their structure. Regardless of which hand we use to write, however, all human beings are `left-handed` at the molecular level. Life on Earth uses the left-handed variety and no one knows how this preference crept into living systems. In 2012, ESA`s Rosetta lander will land on a comet to investigate, among other things, if the origin of this preference lies in the stars.



Living cells use tiny organic molecules (called amino acids) to build proteins in the same way as children build things out of Lego bricks. Most amino acids come in two mirror-image varieties, right- and left-handed. The arrangement of the thumb and four fingers on a left hand is the mirror image of the arrangement on the right. In amino acids, the arrangement of the atoms determines whether the molecule is left- or right-handed.

Uwe Meierhenrich, at the University of Bremen, Germany, thinks that the Earth`s early supply of amino acids came from space, carried by comets. He is part of a European team who reproduced the way organic molecules form in space, to try to understand what the Rosetta lander might find on Comet Wirtanen in 2012.


At a laboratory in Leiden, The Netherlands, they lowered the temperature of a chamber to -261°C, pumped out the air, and injected a rarefied mixture of molecules known to exist in space: water, ammonia, and simple carbon molecules. These molecules froze onto artificial dust grains inside the chamber. They then shone an ultraviolet lamp onto the samples, to simulate starlight. "Our aim was to simulate interstellar conditions as accurately as possible. We did not adapt the conditions to produce amino acids," says Meierhenrich.

Using a version of Rosetta`s Cometary Sampling and Composition (COSAC) experiment, they found newly formed right- and left-handed amino acids in equal quantities. Earthly life, however, uses only left-handed amino acids. Experiments during the 1950s showed that adding right-handed amino acids to proteins stopped the proteins from growing. Was Earth supplied with more left-handed amino acids than right-handed ones in the beginning, allowing life to begin? One famous study has suggested this. Meierhenrich says, "The excess (of left-handed amino acids) found in the Murcheson meteorite is really small and some of the analyses are controversial. Rosetta will give us a much clearer picture."

Some scientists think the key to creating an excess of left over right is in the type of ultraviolet light that shines on the amino acids. When ultraviolet starlight strikes dust grains, it can begin to twist - either clockwise or anticlockwise. Depending on the direction in which it is twisting, it destroys one handedness of amino acid more than the other. In 1998, an international group of astronomers discovered large amounts of `twisty` light occurring naturally in the dusty cocoons of some young stars, where planets might be forming. "I think this is the most probable origin of the excesses," says Meierhenrich who is now using a Paris Laboratory where scientists can twist ultraviolet light to recreate these conditions.

We may well find that Rosetta`s findings on Comet Wirtanen reliably indicate that our molecular left-handedness is indeed a legacy of the stars.

Monica Talevi | alfa
Further information:
http://www.esa.int

More articles from Life Sciences:

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht A microscopic topographic map of cellular function
13.06.2019 | University of Missouri-Columbia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>