Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At that star, turn left!

17.10.2002


Our bodies contain proteins that are made of smaller molecules that can be either left- or right-handed, depending upon their structure. Regardless of which hand we use to write, however, all human beings are `left-handed` at the molecular level. Life on Earth uses the left-handed variety and no one knows how this preference crept into living systems. In 2012, ESA`s Rosetta lander will land on a comet to investigate, among other things, if the origin of this preference lies in the stars.



Living cells use tiny organic molecules (called amino acids) to build proteins in the same way as children build things out of Lego bricks. Most amino acids come in two mirror-image varieties, right- and left-handed. The arrangement of the thumb and four fingers on a left hand is the mirror image of the arrangement on the right. In amino acids, the arrangement of the atoms determines whether the molecule is left- or right-handed.

Uwe Meierhenrich, at the University of Bremen, Germany, thinks that the Earth`s early supply of amino acids came from space, carried by comets. He is part of a European team who reproduced the way organic molecules form in space, to try to understand what the Rosetta lander might find on Comet Wirtanen in 2012.


At a laboratory in Leiden, The Netherlands, they lowered the temperature of a chamber to -261°C, pumped out the air, and injected a rarefied mixture of molecules known to exist in space: water, ammonia, and simple carbon molecules. These molecules froze onto artificial dust grains inside the chamber. They then shone an ultraviolet lamp onto the samples, to simulate starlight. "Our aim was to simulate interstellar conditions as accurately as possible. We did not adapt the conditions to produce amino acids," says Meierhenrich.

Using a version of Rosetta`s Cometary Sampling and Composition (COSAC) experiment, they found newly formed right- and left-handed amino acids in equal quantities. Earthly life, however, uses only left-handed amino acids. Experiments during the 1950s showed that adding right-handed amino acids to proteins stopped the proteins from growing. Was Earth supplied with more left-handed amino acids than right-handed ones in the beginning, allowing life to begin? One famous study has suggested this. Meierhenrich says, "The excess (of left-handed amino acids) found in the Murcheson meteorite is really small and some of the analyses are controversial. Rosetta will give us a much clearer picture."

Some scientists think the key to creating an excess of left over right is in the type of ultraviolet light that shines on the amino acids. When ultraviolet starlight strikes dust grains, it can begin to twist - either clockwise or anticlockwise. Depending on the direction in which it is twisting, it destroys one handedness of amino acid more than the other. In 1998, an international group of astronomers discovered large amounts of `twisty` light occurring naturally in the dusty cocoons of some young stars, where planets might be forming. "I think this is the most probable origin of the excesses," says Meierhenrich who is now using a Paris Laboratory where scientists can twist ultraviolet light to recreate these conditions.

We may well find that Rosetta`s findings on Comet Wirtanen reliably indicate that our molecular left-handedness is indeed a legacy of the stars.

Monica Talevi | alfa
Further information:
http://www.esa.int

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>