Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shadow proteins in thymus - Clues to how immune system works?

11.10.2002


Findings could lead to new understanding of diabetes, Crohn’s, and more



Researchers at Joslin Diabetes Center, Harvard Medical School, and other institutions have identified the function of a protein, dubbed aire, that is critical to helping immune cells learn to recognize--and avoid attacking--the far-flung organs and tissues of the body. The protein appears to work by turning on in the thymus, which lies beneath the breast bone, the production of a wide array of proteins from the body’s periphery. The discovery could shed light not only on how the healthy immune system develops tolerance to its own proteins but also how tolerance is lost, as it is in diabetes, rheumatoid arthritis, Crohn’s disease and other autoimmune illnesses.

"Our findings lead back to humans because they tell us about a very important mechanism for controlling autoimmunity," said Diane Mathis, a Harvard Medical School professor of medicine at Joslin. "At the same time, they may help us understand why people develop autoimmune diseases." The findings are reported in the Oct. 11 Science.


Until recently, immune cells, in particular T cells, were thought to learn their most basic lesson--attack foreign proteins but spare those that are native--in one of two places. Those with a broad mandate, namely to monitor widely expressed cellular proteins or proteins circulating in the bloodstream, were thought to be trained to distinguish self from foreign proteins while still in the thymus. Cells that recognize proteins in organs and tissues in the periphery, such as the pancreas, thyroid, and adrenals, were believed to learn the self-vs.-nonself lesson once they left the thymus. This organ was thought incapable of producing proteins made by distant organs such as the liver, brain, and pancreas.

But it appears that T cells in training may be learning the lesson while still in the thymus. Building on work of other groups, first author Mark Anderson, a research fellow in medicine at Joslin; Emily Venanzi, a Harvard Medical School graduate student in immunology; Christophe Benoist, a professor of medicine at Joslin; Mathis, and colleagues, reported that a small network of thymic cells, the medullary epithelial cells, expresses hundreds of genes usually associated with organs such as the pancreas, brain, and liver.

"No one would think you would encounter your big toe protein in the thymus, but in fact proteins from the eye, the liver, from all over the place are specifically expressed in a small population of stromal cells in the thymus," said Benoist.

A majority of these expressed proteins are used by the peripheral organs to tell T cells to stay away. Indeed, the researchers believe the proteins are used in the thymus to foreshadow the very self-antigens that the T cells will encounter once they travel out into the body. "There is a foretelling of these proteins in the thymus, which is why we call it an immunological self-shadow," said Mathis.

In a critical step, the Joslin team discovered that the transcription factor aire plays a critical role in producing these self-shadow proteins in the thymus (hence its name, which is formed from two letters in each word of autoimmune regulator). Mutant mice lacking aire exhibited in their thymus only a fraction of the peripheral self-proteins found in the thymus of normal mice. And the mutants exhibited widespread autoimmunity. In fact, their condition was reminiscent of a condition found in humans carrying a defective AIRE gene, autoimmune polyglandular syndrome.

It is not yet clear how the shadow proteins educate developing T cells inside the thymus, though Benoist suspects the processes are similar to those used to eliminate T cells that react to ubiquitous or circulating proteins. Nor is it clear how aire controls the expression of so many shadow proteins. One possibility is that it works by binding to other transcription factors. "It is going to be interesting to figure out what the mechanism really is," she said.

While novel, the mechanism is probably only one of many that the immune system uses to educate peripheral T cells about the self-vs.-foreign distinction. "It is very dangerous for the immune system to have self-reactive T cells," Anderson said. "It takes advantage of any mechanism to get rid of these cells. So there is a whole net of mechanisms."

Marge Dwyer | EurekAlert!

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>