Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologist’s new experiment may vindicate Darwin

25.09.2002


Charles Darwin, the founder of the modern theory of evolution, was an avid proponent of sympatric speciation, the idea that a single species need not be geographically divided in order to evolve into two separate species. In the mid-20th century, however, certain vocal scientists convinced the scientific community that geographically isolating two halves of a population was a necessary factor in creating a new species. It wasn’t until the last few decades that modern biologists began to reexamine Darwin’s ideas to discover that he may have been quite right all along. Now the theory behind one such idea is undergoing its most exhaustive test yet at the University of Rochester.

James D. Fry, assistant professor of biology, is running fruit flies through a series of tests to see if a few, subtle changes in the flies’ environment could be enough to trigger the creation of a new species.

"For a long time there has been speculation that small differences in the environment coupled with small differences in the way organisms behave could lead to speciation without any other external factors," says Fry. "This is this first time this idea has been tested in the same way it might happen in nature. If we can get the flies to start exhibiting changes with these tests, then it’s very likely that it can happen easily in nature."



Similar trials tested speciation mechanisms that worked well in theory, but may not be very applicable to insects in the wild. Those experiments gave a choice of several of habitats, with only those flies choosing the most extreme habitats allowed to breed. This method imposes selection directly on the trait of habitat choice by weeding out those organisms that choose "incorrect" ones, whereas Fry’s experiment is designed specifically so that no fly’s habitat choice will automatically exclude it from breeding--a design he feels more closely approximates the natural world.

Fry lets the flies group together in a sort of lobby area before letting them out via two tunnels. One tunnel leads to a bright area and the other toward a darker area. Inevitably, some of the flies choose to go to the light and others to the darkness. Once in their new light or dark homes, Fry inspects the number of the bristles on each fly, acting like a sort of natural selection by removing sparsely bristled flies from the bright area and more densely bristled flies from the darker one. The bristles act as a marker that Fry can track over generations. The leftover flies in each habitat are then allowed to reproduce before being sent back to the lobby to make a habitat choice again.

Initially, Fry does not expect much correlation between bristle number and the individual’s preference for light or dark abodes, but after several dozen generations over the course of several months he expects to see that flies with fewer bristles tend toward the dark while multi-bristled ones head for the light. A fly that prefers the dark and happens to have few bristles will survive Fry’s "weeding out" process and will reproduce with another few-bristled dark-lover. Genetics being what they are, the couple is more likely to have offspring with fewer bristles and a hankering for a darker habitat. The couple may very well have some multi-bristlers or light-lovers, but those will never be able to reproduce because once everyone is sent back to the lobby, those offspring will head toward the habitat where their number of bristles will mark them for removal. The bristle number is being used as a sort of surrogate for a trait that might affect survival in nature, such as the camouflage coloring of a moth. This survivability variable was missing in previous studies since in them the only thing being selected for or against was the choice of habitat itself.

Eventually, after months of weeding and 50 to 60 generations, Fry hopes to see a correlation between brightness preference and bristle number. Already, a weak correlation is appearing after just 12 generations. If he finds that all the flies moving toward the light have few bristles, he’ll be fairly sure that they will never again mate with the dark-loving flies. If left in this artificial ecosystem, the flies will likely develop into completely separate species.

This kind of speciation mechanism relies on small differences in the environment that interact with the small differences in the behavior of individuals of a species. Individual preferences and small environmental differences are far more common than large geologic events such as floods or rising mountain ranges that are necessary for full geologic isolation so this model, if it is successful, could give biologists a new tool when piecing together the history of a species.

"Speciation without geologic isolation has been tested before, but the tests weren’t all that applicable to nature," says Fry. "If this test shows two separate populations of flies forming, it would add a new model of speciation to evolution--one that describes bugs, which account for a quarter of the species on earth."

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Life Sciences:

nachricht Regulation of root growth from afar: How genes from leaf cells affect root growth.
22.07.2019 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

USF geoscientists discover mechanisms controlling Greenland ice sheet collapse

22.07.2019 | Earth Sciences

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>