Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast Cancer Gene Repairs Damaged DNA

13.09.2002


Structural studies of the protein produced by the BRCA2 gene, which is implicated in the development of hereditary breast and ovarian cancers, reveal that the protein is intimately involved in repairing damaged DNA.



DNA-repair proteins perform a vital function and protect against potentially catastrophic events such as cancer-causing mutations or chromosome rearrangements, which are hallmarks of tumor cells.

Howard Hughes Medical Institute investigator Nikola P. Pavletich and his colleagues at Memorial Sloan-Kettering Cancer Center used x-ray crystallography to obtain “molecular snapshots” of the BRCA2 protein. The images produced by Pavletich’s team show that BRCA2 is capable of binding to DNA, a conclusion that is supported by the group’s biochemical experiments. The research was published in the September 13, 2002, issue of the journal Science.


The scientists were investigating the role of BRCA2 in homologous recombination, which is one of the ways that cells repair broken chromosomes. In this type of DNA repair, broken chromosomes are fixed by using the information from a sister chromosome as a template and “splint” to guide repair. This type of DNA repair is accurate and is the optimal mode of repair in dividing cells. Prior to the studies by Pavletich and his colleagues, BRCA2 was believed to play only an indirect regulatory role in DNA repair.

“BRCA2 had been previously implicated in the control of homologous recombination, although its precise role in this process was unknown,” said HHMI investigator Stephen J. Elledge, who is at Baylor College of Medicine. “The significance of the structural studies of BRCA2 by Pavletich’s group is that they provide evidence for a direct and unexpected biochemical role for BRCA2 in the enzymology of homologous recombination itself. It was an elegant study that will forever change the way we think about BRCA2 and its role in breast cancer.” Elledge authored an accompanying article in Science that discusses the implications of the findings by Pavletich and his colleagues.

Pavletich’s team encountered several major technical hurdles, the first of which involved producing a segment of the BRCA2 protein — called the C-terminal end. “We chose this fragment because of evidence — based on its amino acid sequence, on the fact that it is conserved in many organisms, and on the fact that it is often mutated in tumors — that it carries out an important function in homologous-recombination-mediated repair,” said Pavletich.

Producing this large protein fragment of BRCA2 and crystallizing it for x-ray crystallographic studies was a formidable challenge. Lead author Haijuan Yang got a break when she identified a “companion” protein called DSS1 that bound to the BRCA2 fragment and made it amenable to crystallization.

The scientists then used x-ray crystallography to determine the detailed structure of the BRCA2 fragment. In this process, x-ray beams are directed through purified crystals of a protein, and the resulting patterns of diffraction are analyzed to deduce the protein’s structure.

“Once we analyzed the structure and compared it with known protein structures, it had domains that looked familiar,” said Pavletich. “These domains, called oligonucleotide binding folds, are found in proteins known to bind single-stranded DNA.”

The scientists then conducted biochemical binding tests in vitro using the BRCA2 domain, which revealed that the BRCA2 fragment did indeed bind single-stranded DNA. This finding was confirmed by additional studies in which the researchers crystallized the BRCA2 fragment bound to single-stranded DNA. According to Pavletich, the experiments provided strong evidence that BRCA2 is intimately involved with DNA binding in the repair process.

The researchers discovered that another domain in the BRCA2 fragment binds double-stranded DNA, although they have not yet established conclusively that the domain by itself binds double-stranded DNA.

Pavletich’s group also showed that BRCA2 stimulates the activity of an enzyme called RAD51 recombinase, a key component of the DNA-repair machinery. “Our observations taken together with other data, suggest that BRCA2 is what recognizes double-strand breaks,” said Pavletich. “When a cell encounters a double-strand break, it chews up that break to produce single-stranded DNA at the end of double-stranded DNA. And this is what we think is recognized by BRCA2, since it has both single-stranded and double-stranded DNA binding activity.

“We were surprised at this direct role of BRCA2, because among scientists in the field, [BRCA2] was thought to be the regulator of RAD51. This function of BRCA2 was more in line with BRCA1, which is thought to be a signaling protein in the process,” said Pavletich. Mutations in BRCA1 also have been implicated in the development of breast and other cancers.

Pavletich added that “our findings don’t reveal any obvious treatment strategies, but as with all basic science, studying how a process works, and how it malfunctions in cancer brings us closer to understanding the process of tumorigenesis.” Thus, he said, his laboratory plans detailed studies of how the DNA-binding domain of BRCA2 works in concert with the separate domain that binds to RAD51, in triggering the DNA-repair machinery.

Jim Keeley | alfa
Further information:
http://www.hhmi.org/

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>