Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequence provides insights into a pathogen’s virulence mechanism allowing for vaccine development

27.08.2002


Scientists have analyzed the complete genome sequence of an emerging human pathogen, Streptococcus agalactiae (also known as group B streptococcus or "strep B"), which is a leading cause of pneumonia and meningitis in newborns and the source of life-threatening illnesses in a growing number of adults with deficient immune systems.



The study, published this week in the on-line version of the Proceedings of the National Academy of Sciences (PNAS), not only determined the pathogen’s genetic makeup but also compared it to other isolates of the same microbe. That analysis shed light onto why S. agalactiae -- which is found in the digestive or genital tracts of many healthy people – has emerged in recent years as a more widespread and virulent cause of illness in certain adults.

"We were surprised to find so many differences among the isolates of this important pathogen," said Hervé Tettelin, an associate investigator at The Institute for Genomic Research (TIGR) who led the sequencing project. "Those differences could help explain why some strains of S. agalactiae are much more virulent than others."


Tettelin and other TIGR scientists did the comparative genomics analysis in cooperation with a research group led by Dennis L. Kasper at Harvard Medical School and a team led by Guido Grandi at the vaccine research division of Chiron, S.p.A., a biomedical company that funded the research project. The research was supported by Chiron and by grants from the National Institutes of Health.

"Completion of the genome sequence represents an important milestone in the study of this organism," said Kasper. "We anticipate that many investigators will take advantage of the S. agalactiae genome sequence to identify new virulence determinants and potential targets for vaccine development."

"We wanted the genome information to identify proteins which can be used in a vaccine," said Guido Grandi, head of Biochemistry and Molecular Biology at Chiron vaccine research. "We have used this new genomic approach already to make a type B meningococcal meningitis vaccine which is now being tested in people. So we know that the strategy works."

To find out more about the molecular reasons for the virulence of what is known as the "serotype V" isolate of S. agalactiae, the authors of the study compared that genome to the genetic makeup of other S. agalactiae strains and also with two different species of streptococci that cause human diseases: S. pneumoniae, which causes pneumonia, meningitis and septicemia, and S. pyogenes, which among other illnesses causes the "strep throat" that can lead to acute rheumatic fever.

Tettelin said the microarray experiments that compared those related genomes found numerous differences, even among strains with the same serotype – that is, the type of polysaccharides that make up the capsule (outer coat) that surrounds each bacterium. The genetic diversity indicates that S. agalactiae has mechanisms (including acquisition, duplication and re-assortment of genes) that have allowed it "to adapt to new environmental niches and to emerge as a major human pathogen."

They also said in silico (computer) analysis showed that S. agalactiae’s genome differed from that of other streptococci in several of the microbe’s metabolic pathways and in related transport systems through the bacterium’s cell membrane. Those differences probably relate to how S. agalactiae adapted to distinct niches in its human and bovine hosts, the paper suggests. The researchers also found genes unique to S. agalactiae that likely play a role in colonization or in disease: genes related to surface proteins, capsule synthesis, and the hemolysin enzyme that clears the path for microbes to invade other parts of the body and cause disease.

The researchers chose to sequence type V because it is the most common capsule type that is associated with invasive infection among adults other than pregnant women. And the emergence of type V strains over the last decade appears to parallel the increase in S. algalactiae-related diseases among those adults.

While S. agalactiae is normally a harmless organism when it colonizes the human gastrointestinal or genital tracts, the microbe can cause life-threatening invasive infection in susceptible hosts, which include newborn infants, pregnant women, and adults with underlying chronic illnesses. The number of neonatal S. agalactiae infections has dropped since physicians began prescribing antibiotics during delivery for high-risk pregnant women in 1996, but invasive infections in adults with deficient immune systems have increased.

S. agalactiae has a circular genome of about 2.16 million base pairs. Researchers predicted that there are 2,176 genes in that genome, and about 65% of the proteins expressed by those genes were of known function. The authors of the study found that the three streptococcal species shared 1,060 genes--about half of their genes-- but that 683 genes are unique to S. agalactiae.

"This study is important because it sheds light on the virulence mechanism of one of the last major human pathogens whose genome had not yet been sequenced," said Claire M. Fraser, TIGR’s president. "This should help researchers find vaccine candidates or drug targets to fight a pathogen with broad impact on human health."

Debbie Lebkicher | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>