Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequence provides insights into a pathogen’s virulence mechanism allowing for vaccine development

27.08.2002


Scientists have analyzed the complete genome sequence of an emerging human pathogen, Streptococcus agalactiae (also known as group B streptococcus or "strep B"), which is a leading cause of pneumonia and meningitis in newborns and the source of life-threatening illnesses in a growing number of adults with deficient immune systems.



The study, published this week in the on-line version of the Proceedings of the National Academy of Sciences (PNAS), not only determined the pathogen’s genetic makeup but also compared it to other isolates of the same microbe. That analysis shed light onto why S. agalactiae -- which is found in the digestive or genital tracts of many healthy people – has emerged in recent years as a more widespread and virulent cause of illness in certain adults.

"We were surprised to find so many differences among the isolates of this important pathogen," said Hervé Tettelin, an associate investigator at The Institute for Genomic Research (TIGR) who led the sequencing project. "Those differences could help explain why some strains of S. agalactiae are much more virulent than others."


Tettelin and other TIGR scientists did the comparative genomics analysis in cooperation with a research group led by Dennis L. Kasper at Harvard Medical School and a team led by Guido Grandi at the vaccine research division of Chiron, S.p.A., a biomedical company that funded the research project. The research was supported by Chiron and by grants from the National Institutes of Health.

"Completion of the genome sequence represents an important milestone in the study of this organism," said Kasper. "We anticipate that many investigators will take advantage of the S. agalactiae genome sequence to identify new virulence determinants and potential targets for vaccine development."

"We wanted the genome information to identify proteins which can be used in a vaccine," said Guido Grandi, head of Biochemistry and Molecular Biology at Chiron vaccine research. "We have used this new genomic approach already to make a type B meningococcal meningitis vaccine which is now being tested in people. So we know that the strategy works."

To find out more about the molecular reasons for the virulence of what is known as the "serotype V" isolate of S. agalactiae, the authors of the study compared that genome to the genetic makeup of other S. agalactiae strains and also with two different species of streptococci that cause human diseases: S. pneumoniae, which causes pneumonia, meningitis and septicemia, and S. pyogenes, which among other illnesses causes the "strep throat" that can lead to acute rheumatic fever.

Tettelin said the microarray experiments that compared those related genomes found numerous differences, even among strains with the same serotype – that is, the type of polysaccharides that make up the capsule (outer coat) that surrounds each bacterium. The genetic diversity indicates that S. agalactiae has mechanisms (including acquisition, duplication and re-assortment of genes) that have allowed it "to adapt to new environmental niches and to emerge as a major human pathogen."

They also said in silico (computer) analysis showed that S. agalactiae’s genome differed from that of other streptococci in several of the microbe’s metabolic pathways and in related transport systems through the bacterium’s cell membrane. Those differences probably relate to how S. agalactiae adapted to distinct niches in its human and bovine hosts, the paper suggests. The researchers also found genes unique to S. agalactiae that likely play a role in colonization or in disease: genes related to surface proteins, capsule synthesis, and the hemolysin enzyme that clears the path for microbes to invade other parts of the body and cause disease.

The researchers chose to sequence type V because it is the most common capsule type that is associated with invasive infection among adults other than pregnant women. And the emergence of type V strains over the last decade appears to parallel the increase in S. algalactiae-related diseases among those adults.

While S. agalactiae is normally a harmless organism when it colonizes the human gastrointestinal or genital tracts, the microbe can cause life-threatening invasive infection in susceptible hosts, which include newborn infants, pregnant women, and adults with underlying chronic illnesses. The number of neonatal S. agalactiae infections has dropped since physicians began prescribing antibiotics during delivery for high-risk pregnant women in 1996, but invasive infections in adults with deficient immune systems have increased.

S. agalactiae has a circular genome of about 2.16 million base pairs. Researchers predicted that there are 2,176 genes in that genome, and about 65% of the proteins expressed by those genes were of known function. The authors of the study found that the three streptococcal species shared 1,060 genes--about half of their genes-- but that 683 genes are unique to S. agalactiae.

"This study is important because it sheds light on the virulence mechanism of one of the last major human pathogens whose genome had not yet been sequenced," said Claire M. Fraser, TIGR’s president. "This should help researchers find vaccine candidates or drug targets to fight a pathogen with broad impact on human health."

Debbie Lebkicher | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht New yeast species discovered in Braunschweig, Germany
13.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Saliva test shows promise for earlier and easier detection of mouth and throat cancer
13.12.2019 | Elsevier

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>