Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of key receptor unlocked; Related proteins will fall like dominoes

06.08.2002


After two years of stubborn persistence, scientists at Johns Hopkins have determined the 3-D structure of part of a protein called HER3, which should speed efforts to interfere with abnormal growth and cancer.



"It took us more than two years to interpret the data and get HER3’s structure," says Dan Leahy, Ph.D., a Howard Hughes Medical Institute investigator and a professor of biophysics in Hopkins’ Institute for Basic Biomedical Sciences. "Now that we have it, it might take only weeks to figure out its relatives."

Reporting the structure in the Aug. 1 online version of Science, Leahy says finding out the shapes of the entire HER family of proteins, HER1, HER2 and HER4, will provide the first opportunity to rationally design new drugs to interfere with them, possibly preventing or treating select forms of cancer.


HER2, for example, is the target of the breast cancer treatment Herceptin, an antibody. But while it’s an effective life-prolonging treatment in certain breast cancer patients, different strategies targeting HER2 might also prove effective. Having a protein’s structure allows scientists to conceive new strategies and pursue new classes of drugs, says Leahy.

A focus of many scientists because of the proteins’ involvement in cell growth, the HER family are receptors for "epidermal growth factor" (EGF) and other chemicals. Although the DNA sequences of HER proteins have been known for some time, technical problems dogged efforts to understand how the proteins are shaped, Leahy says.

"Until we know proteins’ structures, we’re very limited in figuring out how a molecule or possible drug might bind," says Leahy. "We now have a starting point to see how molecules binding to HER3 change its shape and turn it on."

Stuck in the cell membrane, each HER protein consists of three parts: a region outside the cell that recognizes and binds certain molecules; a region that anchors the protein in the cell membrane; and a region inside the cell that, when activated, adds phosphates to various proteins. Leahy and postdoctoral fellow Hyun-Soo Cho determined the structure of the first of these regions for HER3.

Combining a number of available methods, Leahy, Cho and technician Patti Longo purified large amounts of the HER3 receptor region and formed uniform crystals, crucial for figuring out protein structures. By bombarding the crystals with X-rays at the National Synchrotron Light Source at Brookhaven National Laboratory in New York, Cho got the information he needed to start figuring out how the protein looks in space.

In each crystal there are billions of protein molecules, organized in a careful pattern. As the X-rays travel through the crystal, they hit individual atoms in the protein and are bounced back or bent, depending on the 3-D arrangement of the atoms. Others travel through unaffected. By analyzing where the X-rays end up, the scientists can reconstruct how the protein is put together.

One unexpected aspect of the protein’s structure is what Leahy and Cho call the "snap" region -- two finger-like loops that reach out toward one another and interact, stabilizing the structure.

"While it’s all speculation right now, it’s easy to imagine how losing the "snap" interaction might be involved in binding or activation," Leahy says.

HER1 and HER4 have the same sequence of building blocks in the "snap" region, but HER2 does not, which may help explain why HER2 is the only one of the four receptors that interacts only with other HER proteins.


The experiments were funded by the Howard Hughes Medical Institute and the National Institutes of Health.

Media Contact: Joanna Downer 410-614-5105
Email: jdowner1@jhmi.edu

Joanna Downer | EurekAlert!
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>