Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of key receptor unlocked; Related proteins will fall like dominoes

06.08.2002


After two years of stubborn persistence, scientists at Johns Hopkins have determined the 3-D structure of part of a protein called HER3, which should speed efforts to interfere with abnormal growth and cancer.



"It took us more than two years to interpret the data and get HER3’s structure," says Dan Leahy, Ph.D., a Howard Hughes Medical Institute investigator and a professor of biophysics in Hopkins’ Institute for Basic Biomedical Sciences. "Now that we have it, it might take only weeks to figure out its relatives."

Reporting the structure in the Aug. 1 online version of Science, Leahy says finding out the shapes of the entire HER family of proteins, HER1, HER2 and HER4, will provide the first opportunity to rationally design new drugs to interfere with them, possibly preventing or treating select forms of cancer.


HER2, for example, is the target of the breast cancer treatment Herceptin, an antibody. But while it’s an effective life-prolonging treatment in certain breast cancer patients, different strategies targeting HER2 might also prove effective. Having a protein’s structure allows scientists to conceive new strategies and pursue new classes of drugs, says Leahy.

A focus of many scientists because of the proteins’ involvement in cell growth, the HER family are receptors for "epidermal growth factor" (EGF) and other chemicals. Although the DNA sequences of HER proteins have been known for some time, technical problems dogged efforts to understand how the proteins are shaped, Leahy says.

"Until we know proteins’ structures, we’re very limited in figuring out how a molecule or possible drug might bind," says Leahy. "We now have a starting point to see how molecules binding to HER3 change its shape and turn it on."

Stuck in the cell membrane, each HER protein consists of three parts: a region outside the cell that recognizes and binds certain molecules; a region that anchors the protein in the cell membrane; and a region inside the cell that, when activated, adds phosphates to various proteins. Leahy and postdoctoral fellow Hyun-Soo Cho determined the structure of the first of these regions for HER3.

Combining a number of available methods, Leahy, Cho and technician Patti Longo purified large amounts of the HER3 receptor region and formed uniform crystals, crucial for figuring out protein structures. By bombarding the crystals with X-rays at the National Synchrotron Light Source at Brookhaven National Laboratory in New York, Cho got the information he needed to start figuring out how the protein looks in space.

In each crystal there are billions of protein molecules, organized in a careful pattern. As the X-rays travel through the crystal, they hit individual atoms in the protein and are bounced back or bent, depending on the 3-D arrangement of the atoms. Others travel through unaffected. By analyzing where the X-rays end up, the scientists can reconstruct how the protein is put together.

One unexpected aspect of the protein’s structure is what Leahy and Cho call the "snap" region -- two finger-like loops that reach out toward one another and interact, stabilizing the structure.

"While it’s all speculation right now, it’s easy to imagine how losing the "snap" interaction might be involved in binding or activation," Leahy says.

HER1 and HER4 have the same sequence of building blocks in the "snap" region, but HER2 does not, which may help explain why HER2 is the only one of the four receptors that interacts only with other HER proteins.


The experiments were funded by the Howard Hughes Medical Institute and the National Institutes of Health.

Media Contact: Joanna Downer 410-614-5105
Email: jdowner1@jhmi.edu

Joanna Downer | EurekAlert!
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>