Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of key receptor unlocked; Related proteins will fall like dominoes

06.08.2002


After two years of stubborn persistence, scientists at Johns Hopkins have determined the 3-D structure of part of a protein called HER3, which should speed efforts to interfere with abnormal growth and cancer.



"It took us more than two years to interpret the data and get HER3’s structure," says Dan Leahy, Ph.D., a Howard Hughes Medical Institute investigator and a professor of biophysics in Hopkins’ Institute for Basic Biomedical Sciences. "Now that we have it, it might take only weeks to figure out its relatives."

Reporting the structure in the Aug. 1 online version of Science, Leahy says finding out the shapes of the entire HER family of proteins, HER1, HER2 and HER4, will provide the first opportunity to rationally design new drugs to interfere with them, possibly preventing or treating select forms of cancer.


HER2, for example, is the target of the breast cancer treatment Herceptin, an antibody. But while it’s an effective life-prolonging treatment in certain breast cancer patients, different strategies targeting HER2 might also prove effective. Having a protein’s structure allows scientists to conceive new strategies and pursue new classes of drugs, says Leahy.

A focus of many scientists because of the proteins’ involvement in cell growth, the HER family are receptors for "epidermal growth factor" (EGF) and other chemicals. Although the DNA sequences of HER proteins have been known for some time, technical problems dogged efforts to understand how the proteins are shaped, Leahy says.

"Until we know proteins’ structures, we’re very limited in figuring out how a molecule or possible drug might bind," says Leahy. "We now have a starting point to see how molecules binding to HER3 change its shape and turn it on."

Stuck in the cell membrane, each HER protein consists of three parts: a region outside the cell that recognizes and binds certain molecules; a region that anchors the protein in the cell membrane; and a region inside the cell that, when activated, adds phosphates to various proteins. Leahy and postdoctoral fellow Hyun-Soo Cho determined the structure of the first of these regions for HER3.

Combining a number of available methods, Leahy, Cho and technician Patti Longo purified large amounts of the HER3 receptor region and formed uniform crystals, crucial for figuring out protein structures. By bombarding the crystals with X-rays at the National Synchrotron Light Source at Brookhaven National Laboratory in New York, Cho got the information he needed to start figuring out how the protein looks in space.

In each crystal there are billions of protein molecules, organized in a careful pattern. As the X-rays travel through the crystal, they hit individual atoms in the protein and are bounced back or bent, depending on the 3-D arrangement of the atoms. Others travel through unaffected. By analyzing where the X-rays end up, the scientists can reconstruct how the protein is put together.

One unexpected aspect of the protein’s structure is what Leahy and Cho call the "snap" region -- two finger-like loops that reach out toward one another and interact, stabilizing the structure.

"While it’s all speculation right now, it’s easy to imagine how losing the "snap" interaction might be involved in binding or activation," Leahy says.

HER1 and HER4 have the same sequence of building blocks in the "snap" region, but HER2 does not, which may help explain why HER2 is the only one of the four receptors that interacts only with other HER proteins.


The experiments were funded by the Howard Hughes Medical Institute and the National Institutes of Health.

Media Contact: Joanna Downer 410-614-5105
Email: jdowner1@jhmi.edu

Joanna Downer | EurekAlert!
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>