Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What inspires yeast cells to divide?

01.08.2002


Rockefeller researchers discover unexpected trigger

Often in science a novel set of experiments comes along that forces researchers to abandon old models in exchange for new ones that better fit their observations. This is the case in a new Nature report by Rockefeller University researchers, which finds that past models of cellular division in the simple yeast organism were focused on the wrong protein.

Until now, scientists thought that yeast cells began dividing into two separate cells upon the destruction of a "cyclin" protein called Clb5. But the new research shows that a related protein called Clb2 is in fact the real trigger.



"To our surprise, the current model of cyclins and cellular division in yeast does not appear to hold true," says Ralph Wäsch, M.D., a postdoctoral researcher at Rockefeller and first author of the paper. "We found that replicating cells do divide in the presence of Clb5, which means that its destruction cannot be the signal for division. What’s more, we show that replicating cells cannot divide in the presence of Clb2."

In addition to providing fundamental insight into the "cell cycle," the process by which all cells from yeast to human create exact duplicates of themselves, the findings have implications for treating cancer - which is characterized by a cell cycle gone awry.

"Yeast and human cells share many of the same cell cycle mechanisms," says Frederick R. Cross, Ph.D., head of the Laboratory of Yeast Molecular Genetics and principal author of the paper. "Because of this and because they are easier to work with, yeast organisms are ideal models for studying how the cell cycle may normally work in humans, as well as how it might malfunction in cancer."

How cells reproduce

All eukaryotic cells (cells that contain a nucleus) must undergo some form of a cell cycle in order to grow and reproduce. During this process, two crucial events must occur within a cell’s nucleus: replication of the DNA, called S-phase, and separation of the resulting chromosomes into two groups, called mitosis or M-phase. Completing the cell cycle are two periods of rest, which take place just before both S- and M-phase, and are called G1 and G2, respectively.

Only when the cell senses that these events have transpired without error will it exit mitosis and divide into two daughter cells. At this point, the process either begins anew, or a cell enters a state of dormancy, called G0.

How a cell moves from one phase to the next depends on periodic waves of cyclins: low levels prepare DNA for replication, higher levels trigger S-phase and mitosis, and a drastic drop in cyclin number signals the cell to begin dividing. Equally important to this process are the proteins that cyclins bind to and activate, called cyclin-dependent kinases (CDKs). Once activated, CDKs carry out the specific cellular tasks required for growth and division.

Cancer arises when the body fails to properly regulate this process. For example, healthy cells respond to DNA-damaging agents, such as sunlight or cigarette smoke, by halting their cell cycle while the damage is repaired, or by committing a type of cell suicide called apoptosis. But cancerous cells have lost this system of checks and balances, resulting in uncontrolled cell growth, DNA damage and eventually tumors. This breakdown in the cell cycle is caused by genetic mutations that lead to abnormal quantities of cell cycle proteins, such as the cyclins.

Cellular oscillators

The latest findings also suggest a new way of thinking about a yeast cell’s "oscillators." Oscillators are protein complexes that control the ebb and flow of cyclins within a cell’s nucleus, thereby ensuring an orderly progression through the cell cycle. During mitosis, they signal the cell to destroy certain cyclins, which then forces it to exit mitosis and begin division. In both human and yeast cells, there are two oscillators: the Cdc20 oscillator and the Cdh1 oscillator.

Previously, scientists thought that the Cdc20 oscillator controlled chromosome separation as well as mitotic exit via elimination of Clb5, while the Cdh1 oscillator was thought to complete exit from mitosis by destroying Clb2.

But the new Nature report tells a different story. It shows that the Cdc20 oscillator dictates exit from mitosis via elimination of Clb2, not Clb5. "Previous experiments showing the destruction of Clb5 to be the primary trigger for cell division were not flawed," says Wäsch. "Rather, the conclusions drawn from them were incorrect. We can now go back and reinterpret those experiments as meaning only that the elimination of Clb5 can act as a trigger for mitotic exit under experimental conditions. But we now know that the essential trigger is the direct destruction of Clb2 by Cdc20."

The researchers say that the destruction of Clb5 may instead be required for proper chromosome maintenance.

Interestingly, the results also suggest how the two oscillators may have evolved. According to the researchers, the first oscillator appears to control both chromosome separation and mitotic exit, while the second mainly oversees the break between cycles of growth and division, G1. Because G1 provides higher organisms with the ability to create different types of cells, the researchers speculate that this second oscillator may represent a necessary step in the evolution of both yeast and humans.


This research is funded by Deutsche Krebshilfe, a German cancer research foundation, and the National Institutes of Health.

John D. Rockefeller founded Rockefeller University in 1901 as The Rockefeller Institute for Medical Research. Rockefeller scientists have made significant achievements, including the discovery that DNA is the carrier of genetic information. The University has ties to 21 Nobel laureates, six of which are on campus. Rockefeller University scientists have received this award for two consecutive years: neurobiologist Paul Greengard, Ph.D., in 2000 and cell biologist Günter Blobel, M.D., Ph.D., in 1999, both in Physiology or Medicine. At present, 33 faculty are elected members of the U.S. National Academy of Sciences. Celebrating its Centennial anniversary in 2001, Rockefeller - the nation’s first biomedical research center - continues to lead the field in both scientific inquiry and the development of tomorrow’s scientists.


Whitney Clavin | ErekAlert!

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>