Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virulence factor that induces fatal Candida infection identified

21.07.2008
Culprit is factor produced by intestinal bacteria

Scientists here have found that certain substances from bacteria living in the human intestine cause the normally harmless Candida albicans fungus to become highly infectious.

This discovery by researchers at Singapore's Agency for Science, Technology and Research (A*STAR)'s Institute of Molecular and Cell Biology (IMCB) could possibly lead to the development of novel treatments for immunocompromised patients infected by the fungus.

The team of scientists, led by Associate Professor Wang Yue, a principal investigator at the IMCB, identified peptidoglycan (PGN) — a carbohydrate from bacteria — as a factor responsible for causing the conversion of the otherwise harmless C. albicans to its infectious form.

... more about:
»Infection »Infectious »albicans »bacteria »fungus

The research findings were recently published in the current journal Cell Host & Microbe.

Once in the infectious form, the fungus is able to invade surrounding tissues and escape destruction by the body's own immune cells. Since immunocompromised patients such as those with AIDS or those undergoing chemotherapy or radiation treatment are extremely susceptible to fungal-induced systemic infections, this finding offers an important clue to the basis of C. albicans infections.

After confirming the presence of PGN-derived molecules in human blood, the researchers discovered that the fungus is able to "sense" the presence of the same molecules, which are produced in abundance by bacteria residing in the gastrointestinal track. Earlier studies suggested that PGNs can enter the blood stream through the intestinal wall.

When direct binding of the PGN-derived molecules to a specific protein in C. albicans takes place, it triggers interactions and "sensing" processes that induce the fungus to start growing long, threadlike tubes called hyphae, hence signifying its conversion to the virulent, life-threatening form.

This is the first time that the identities of the "inducer" and that of its "sensor" in C. albicans have been clearly established.

Said Wang, who has been working on C. albicans for more than eight years, "It has been more than 50 years since human blood was first found to contain molecules that can strongly induce C. albicans infection. In spite of efforts by many laboratories worldwide, the identity of the 'inducer' remained elusive.

Thus, we are very excited about being able to help solve this long-held mystery. Finding the PGN sensor in C. albicans is also of great importance, because we can now develop anti-Candida therapies by blocking the sensory mechanism."

According to UNAIDS statistics, the AIDS pandemic claimed an estimated 2.1 million lives in 2007 alone. The latest findings by the Singapore researchers may provide insight for the development of potential anti-Candida therapy in patients suffering from fungal-induced systemic infections.

Previous research breakthroughs by the IMCB team included the discovery of the gene involved in triggering the infectious form of C. albicans, as well as the way in which the gene and its by-products facilitated the transformation process of the fungus.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.a-star.edu.sg/
http://www.imcb.a-star.edu.sg

Further reports about: Infection Infectious albicans bacteria fungus

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>