Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using Genetics to Improve Traditional Psychiatric Diagnoses

18.07.2008
Psychiatry has begun the laborious effort of preparing the DSM-V, the new iteration of its diagnostic manual. In so doing, it once again wrestles with the task set by Carl Linnaeus, to “cleave nature at its joints.”

However, these “joints,” the boundaries between psychiatric disorders, such as that between bipolar disorder and schizophrenia, are far from clear. Prior versions of DSM followed the path outlined by Emil Kraeplin in separating these disorders into distinct categories. Yet, we now know that symptoms of bipolar disorder may be seen in patients with schizophrenia and the reverse is true, as well.

Further, our certainty about the boundary of these disorders is undermined by growing evidence that both schizophrenia and bipolar disorder emerge, in part, from the cumulative impact of a large number of risk genes, each of which conveys a relatively small component of the vulnerability to these disorders. And since many versions of these genes appear to contribute vulnerability to both disorders, the study of common gene variations has raised the possibility that there may be diagnostic, prognostic, and therapeutic meaning embedded in the high degree of variability in the clinical presentations of patients with each disorder.

In addition, many symptoms of schizophrenia and bipolar disorder are traits that are present in the healthy population but are more exaggerated in patient populations. To borrow from Einstein, who struggled to reconcile the wave and particle features of light, our psychiatric diagnoses behave like waves (i.e., spectra of clinical presentations) and particles (traditional categorical diagnoses). Although new genetic approaches may revise our current thinking, such as studies of microdeletions, microinsertions, and microtranslocations of the genome, the wave/particle approach to psychiatric diagnosis places a premium on understanding the “real” clustering of patients into subtypes as opposed to groups created to correspond to the current DSM-IV.

... more about:
»Population »bipolar »schizophrenia

Latent class analysis is one statistical approach for estimating the clustering of subjects into groups. In their study of 270 Irish families, published in the July 15th issue of Biological Psychiatry, Fanous and colleagues conducted this type of analysis, with subjects clustered into the following groups: bipolar, schizoaffective, mania, schizomania, deficit syndrome, and core schizophrenia. When they divided the affected individuals in the study using this approach, they found four regions of the chromosome that were linked to the risk for these syndromes that were not implicated when subjects were categorized according to DSM-IV diagnoses.

Dr. Fanous notes that this finding “suggests that schizophrenia as we currently define it may in fact represent more than one genetic subtype, or disease process.” According to John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System: “Their findings advance the hypothesis that the variability in the clinical presentation of patients diagnosed using DSM-IV categories is meaningful, providing information that may be useful as DSM-V is prepared. However, we do not yet know whether the categories generated by this latent class analysis will generalize to other populations.” This paper highlights an important aspect of the complexity of establishing valid psychiatric diagnoses using a framework adopted from traditional categorical models.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com/

Further reports about: Population bipolar schizophrenia

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>