Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA emerges from DNA's shadow

14.07.2008
EUROCORES program RNAQuality holds first conference

RNA, the transporter of genetic information within the cell, has emerged from the shadow of DNA to become one of the hottest research areas of molecular biology, with implications for many diseases as well as understanding of evolution.

But the field is complex, requiring access to the latest equipment and techniques of imaging, gene expression analysis and bioinformatics, as well as cross-pollination between multiple scientific disciplines. This has led to a major European push to bring the field together via a network of overlapping multidisciplinary projects, spearheaded by the European Science Foundation (ESF) with its EUROCORES Programme RNAQuality.

The great potential of the RNA research field to solve a variety of fundamental problems relevant for understanding of life and predicting cures for diseases was unleashed at the RNAQuality Programme's first conference, held in Granada in June 2008. As well as many European groups, the conference was represented by leading pioneers from the US in the field, who welcomed the new initiative as an important collaborative force.

... more about:
»Cell »DNA »Mutation »RNA »RNAQuality

RNA was once considered to be just the faithful messenger taking genetic information from the genome to the ribosome, or protein factory, but that view has been blown away by recent research. It is now known that RNA has additional roles in regulating gene expression and as an important structural component both in the cell nucleus and in the ribosomes. Furthermore, errors in transcribing RNA from DNA are frequent and require a variety of elaborate quality control mechanisms to prevent both mis-regulation of genes, and manufacture of aberrant RNA and protein fragments that clog up the workings of the cell, and that if unchecked can cause a variety of disorders, including cancers.

Delegates at the conference also heard how there is great potential for creating new compounds that manipulate the cell's apparatus for transcribing DNA into RNA to overcome a number of serious disorders caused by deleterious mutations in specific genes, as opposed to problems with the RNA itself. Jacobson also presented one of the most exciting developments, a molecule that overcomes a common deficiency in genes that prevents their being read right up to the end of their sequence during transcription. Jacobson pointed out that there are about 2400 human genetic disorders resulting from mutations that cause genes to be incompletely read, including cystic fibrosis and muscular dystrophy. A drug based on the molecule is now entering trials that could lead to it becoming generally available. Results so far indicate dramatic improvements in both cystic fibrosis and muscular dystrophy sufferers, although it is only suitable for those disorders caused by the presence of a premature stop sign in a gene sequence, as a result of a mutation. It does though highlight the huge therapeutic potential of the research into RNA and its quality control.

Significant progress has been made in different aspects of RNA research over the last decade or more, leading to the current situation where many groups are working on different aspects of the problem. The challenge being met by the ESF's RNAQuality Programme is to bring these groups together, and make Europe a much greater force in the field, according to Jim Anderson, from Marquette University's Department of Biological Sciences in the US.

Another important aspect of RNA research lies in the interaction between DNA transcription, and the physical structure both of the membrane-bound cell nucleus and the genome coiled within it. Genes are transcribed within the nucleus and the resulting RNA molecules then emerge through small holes that are connected to the genome by proteins called nuclear pore complexes. In one of the presentations, Nick Proudfoot from Oxford University in the UK explained how some genes are enhanced by being close to the nuclear pore complex, indicating a close relationship between gene expression and nuclear structure that must have played out through evolutionary history. Another point to emerge from Proudfoot's presentation was how some genes are expressed more efficiently for a different reason, because the section of DNA containing their sequence is coiled locally into a loop, rather than as a branch. Quite simply, this speeds up the transcription process of reading the gene because the enzyme concerned, RNA Polymerase, can just keep on encircling the loop. As Proudfoot explained, this is relevant for quality control as well. "They may afford quality control by "telling" the polymerase it is transcribing a bona fide gene, with a proper beginning and end," said Proudfoot. "Otherwise the polymerase may have initiated erroneously." The existence of a DNA ring makes it easier to identify the sequence corresponding to a gene, and transcribe it correctly.

Angela Michiko Hama | EurekAlert!
Further information:
http://www.esf.org

Further reports about: Cell DNA Mutation RNA RNAQuality

More articles from Life Sciences:

nachricht Joining forces for immune research
13.08.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The “TRiC” to folding actin
10.08.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>