Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Myelin accelerates stimuli: Shedding light on the mechanisms of myelin formation in the central nervous system

10.07.2008
To allow nerve cells to transmit information efficiently over long distances, advanced life forms have developed a mechanism known as saltatory conduction.

This is made possible by an insulating sheath of myelin that forms at certain intervals around the axonal extensions of nerve cells that specialize in the transmission of stimuli. In disorders such as multiple sclerosis or leukodystrophy, the formation or function of the myelin is disturbed.

Previously, the molecular mechanisms of myelin formation were not well understood. Two projects undertaken by the Department of Molecular Cell Biology of the Faculty of Biology at the Johannes Gutenberg University in Mainz have now made a significant contribution towards understanding these complex cellular processes.

In simple terms, signals transmitted during saltatory conduction jump from one non-myelinated area (the nodes of Ranvier) to another, which enormously increases the speed of transmission. Myelin is formed in the central nervous system when oligodendrocytes - a specific type of brain cell - wrap their cellular extensions around the axons of the nerve cells several times, thus forming a compact stack of cellular membranes. The team of scientists under Professor Jacqueline Trotter from the Mainz Department of Molecular Cell Biology have now been able to show which mechanisms contribute towards the formation of an intact myelin sheath and how the nerve cells control the place and time of myelin production.

... more about:
»Cell »Central »Myelin »formation »mechanism

Reported in a paper published in the Journal of Cell Science was the fact that an endocytic myelin protein recycling system is important for the specific formation of myelin domains. During this process, proteins are first transported to the surface of the cells. They are then reabsorbed into the cell by means of endocytosis and sorted into various membrane domains, which subsequently return to the cell surface. This 'membrane conversion' appears to be necessary for the correct formation of an intact myelin sheath.

Also reported in the prestigious Journal of Cell Biology was the discovery of a new transmission pathway, which originates with the interaction between a neuronal and oligodendroglial surface molecule, involves the activation of the signal molecule essential for myelinization and leads to the local translation of a main myelin protein into an oligodendrocyte. These results have opened up the possibility of developing a new technique of influencing nerve cells and determining where and when myelin is to be synthesized, while also demonstrating the significant role played by both types of cell in the formation of a basis for efficient stimulus transmission within the central nervous system.

Prof. Dr. Jacqueline Trotter | alfa
Further information:
http://www.uni-mainz.de
http://www.uni-mainz.de/FB/Biologie/Molekulare-Zellbiologie/research.php

Further reports about: Cell Central Myelin formation mechanism

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>