Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Myelin accelerates stimuli: Shedding light on the mechanisms of myelin formation in the central nervous system

10.07.2008
To allow nerve cells to transmit information efficiently over long distances, advanced life forms have developed a mechanism known as saltatory conduction.

This is made possible by an insulating sheath of myelin that forms at certain intervals around the axonal extensions of nerve cells that specialize in the transmission of stimuli. In disorders such as multiple sclerosis or leukodystrophy, the formation or function of the myelin is disturbed.

Previously, the molecular mechanisms of myelin formation were not well understood. Two projects undertaken by the Department of Molecular Cell Biology of the Faculty of Biology at the Johannes Gutenberg University in Mainz have now made a significant contribution towards understanding these complex cellular processes.

In simple terms, signals transmitted during saltatory conduction jump from one non-myelinated area (the nodes of Ranvier) to another, which enormously increases the speed of transmission. Myelin is formed in the central nervous system when oligodendrocytes - a specific type of brain cell - wrap their cellular extensions around the axons of the nerve cells several times, thus forming a compact stack of cellular membranes. The team of scientists under Professor Jacqueline Trotter from the Mainz Department of Molecular Cell Biology have now been able to show which mechanisms contribute towards the formation of an intact myelin sheath and how the nerve cells control the place and time of myelin production.

... more about:
»Cell »Central »Myelin »formation »mechanism

Reported in a paper published in the Journal of Cell Science was the fact that an endocytic myelin protein recycling system is important for the specific formation of myelin domains. During this process, proteins are first transported to the surface of the cells. They are then reabsorbed into the cell by means of endocytosis and sorted into various membrane domains, which subsequently return to the cell surface. This 'membrane conversion' appears to be necessary for the correct formation of an intact myelin sheath.

Also reported in the prestigious Journal of Cell Biology was the discovery of a new transmission pathway, which originates with the interaction between a neuronal and oligodendroglial surface molecule, involves the activation of the signal molecule essential for myelinization and leads to the local translation of a main myelin protein into an oligodendrocyte. These results have opened up the possibility of developing a new technique of influencing nerve cells and determining where and when myelin is to be synthesized, while also demonstrating the significant role played by both types of cell in the formation of a basis for efficient stimulus transmission within the central nervous system.

Prof. Dr. Jacqueline Trotter | alfa
Further information:
http://www.uni-mainz.de
http://www.uni-mainz.de/FB/Biologie/Molekulare-Zellbiologie/research.php

Further reports about: Cell Central Myelin formation mechanism

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>