Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passports for penguins

01.07.2008
Penguin recognition project

Ground-breaking technology that will enable biologists to identify and monitor large numbers of endangered animals, from butterflies to whales, without being captured, will be shown to the public for the first time at this year's Royal Society Summer Science exhibition [30 June to 3 July].

Scientists at the University of Bristol, working on Robben Island in South Africa, have devised an intelligent, visual surveillance system that can be integrated into wildlife habitats as a non-intrusive means of capturing detailed and reliable data on the population dynamics and social behaviour of endangered species.

The research advances techniques that originated in computer vision and human biometrics in order to help field biology and to better understand and conserve endangered species, in particular, the African penguin (Spheniscus demersus).

... more about:
»Africa »Animal »species

The project, called the 'Penguin Recognition Project', supported by the Earthwatch, the international environmental charity, and the Leverhulme Trust, has focused on the African penguin because their numbers have declined from more than a million at the start of the last century to fewer than 170,000 today. The penguin population, on Robben Island, South Africa, is a population of nearly 20,000 and conventional tagging techniques can only monitor a few percent of the population. The aim of the Penguin Recognition Project is to develop a system capable of doing automatic monitoring and which, more generally, could be the solution to a real-world problem facing many ecologists.

African penguins carry a pattern of black spots on their chests that does not change from season to season during their adult life. As far as scientists can tell, no two penguins have exactly the same pattern. The researchers have developed a real-time system that can locate African penguins whose chests are visible within video sequences or still images. An extraction of the chest spot pattern allows the generation of a unique biometrical identifier for each penguin. These biometric data can then be used to identify individual, African penguins from video or photographic images by comparison with a population database.

Dr Tilo Burghardt, RCUK Fellow in Exabyte Informatics in the Department of Computer Science at Bristol University, said: "We believe the new technology developed will enable biologists to identify and monitor large numbers of diverse species cheaply, quickly and automatically."

Peter Barham, Professor of Physics at Bristol University and penguin fanatic, who originated the project added: "Once achieved, these systems will revolutionise the precision, quantity and quality of population data available to ecologists and conservationists. There will also be an animal welfare benefit since there is no need to expose the animals to the stress of capture, or side-effects of being marked."

Provided that a good image of a penguin can be extracted, the system can correctly identify the individual with around 98 per cent reliability. The current limitation of the system, based on one camera, is that some passing penguins are hidden behind others, or the lighting is poor. The researchers are currently working to overcome these limitations both by combining images from intelligent pan-tilt-zoom cameras, and by using infra-red imaging to provide data both day and night. The basic image-recognition system has also been trialled with zebras, sharks and, in principle, can be extended to any species with complex surface patterns.

Joanne Fryer | EurekAlert!
Further information:
http://www.SpotThePenguin.com

Further reports about: Africa Animal species

More articles from Life Sciences:

nachricht Researchers find new mutation in the leptin gene
24.06.2019 | Texas Biomedical Research Institute

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>