Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ronin an alternate control for embryonic stem cells

30.06.2008
Like the masterless samurai for whom it is named, the protein Ronin chooses an independent path, maintaining embryonic stem cells in their undifferentiated state and playing essential roles in genesis of embryos and their development, said Baylor College of Medicine researchers who reported on this novel cellular regulator in the current issue of the journal Cell.

Three proteins – Oct4, Sox2 and Nanog -- had previously been considered the "master" regulators of embryonic stem cells, but "Ronin could be as important as these three," said Dr. Thomas Zwaka, assistant professor in the Stem Cells and Regenerative Medicine (STaR) Center at BCM. In fact, he said, if the action of Oct4, considered the most important, is reduced in embryonic stem cells, Ronin can compensate for the loss.

Embryonic stem cells are pluripotent, meaning they have the potential for becoming all other kinds of cells in the body. They are also capable of self-renewal. Oct4, Sox2 and Nanog were previously thought the major method by which embryonic stem cells remained in their pristine state. Now, Ronin represents a different and parallel pathway to achieve the same result.

Ronin is also expressed in early embryonic development of mice. If it is not present, the embryos die, said Zwaka. It is also found in mature oocytes or egg cells.

... more about:
»Embryonic »Ronin »embryonic stem cells

"Ronin is a potent transcription repressor," he said. In fact, it prevents the action of genes that promote the differentiation of cells into the various tissues and organs of the body.

"It does it more effectively than the other three factors together," he said. It silences the differentiation genes epigenetically through specific chemical mechanisms that modify histones, the chief packaging proteins for DNA.

He and his colleagues found Ronin as a follow-up to an earlier study that showed a component of the cell death system called caspase-3 actually cleaved and reduced the amount of Nanog protein. This caused the embryonic stem cells to stop self-renewal and begin differentiation into other kinds of cells.

Zwaka and his colleagues searched for other proteins affected by the caspase and found Ronin, which was previously unknown.

The finding prompts other questions. Can Ronin be used to reprogram differentiated cells into those that more closely resemble embryonic stem cells? What is the significance of the portion of Ronin that resembles a "jumping gene" or transponson called P element transposase, usually found in the genomes of fruit flies?

Ronin is also found in areas of the brain such as the hippocampus and the Purkinje cells of the cerebellum.

"What role does it play in the brain?" asked Zwaka.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.cell.com

Further reports about: Embryonic Ronin embryonic stem cells

More articles from Life Sciences:

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht A microscopic topographic map of cellular function
13.06.2019 | University of Missouri-Columbia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>