Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Confirm Benzene-like Electron Delocalization

23.06.2008
Researchers in the lab of University of Oregon chemist Shih-Yuan Liu have successfully synthesized and structurally characterized boron-nitrogen compounds that are isoelectronic and isostructural to the fundamentally important benzene molecule.

Given the appearance of benzene derivatives in biomedical research and materials science, the boron-nitrogen substituted analogues could potentially play a pivotal role in these areas.

In the Journal of the American Chemical Society, Liu's team reports that, by using a structural approach, benzene surrogates known as 1,2-dihydro-1,2-azaborines possess electron-delocalized structures consistent with aromaticity -- a core concept in chemistry. The paper already has drawn praise by other researchers in a story in this week's Chemical & Engineering News.

"The bottom line is that we have synthesized reference compounds designed to be non-aromatic, and through the comparisons of the aromatic molecule with the reference compounds, we were able to unambiguously say that this compound is really electron delocalized in a way consistent with aromaticity," Liu said. "With the results of other research in this field, our findings present a very strong case that 1,2-dihydro-1,2-azaborines are indeed aromatic."

... more about:
»Benzene »Liu

Liu is among molecule-making chemists who are interested in manipulating heterocycles -- ring-like structures that contain various elements in addition to carbon. Aromatic heterocycles play a big role in pharmaceuticals, Liu said, noting that eight of the top ten selling molecules on the market today contain aromatic compounds.

For biomedical purposes, Liu said, boron-containing molecules disguised with other components readily accepted by living tissues could conceivably be used as markers to track the location of the drug. Eventually, he said, targeted drug therapies might deliver very specific tumor-destroying action that leaves healthy cells untouched.

"Our objective is really to first develop the synthetic chemistry of these boron-nitrogen heterocycles, make it accessible to other chemists to study, and ultimately go into applied research to create opportunities in cancer therapies and materials sciences," Liu said. "I believe that we have made substantial progress for expanding the scope of accessible molecules such as this. The methods we have developed here at the University of Oregon are beginning to be quite useful."

Co-authors on the paper were lead author Eric R. Abbey, a doctoral student, and Lev N. Zakharov, director of the X-Ray Diffraction Lab in the UO's Center for Advanced Materials Characterization in Oregon (CAMCOR). The research was funded in part by the National Science Foundation.

About the University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

Source: Shih-Yuan Liu, assistant professor of chemistry, College of Arts and Sciences, 541-346-5573; lsy@uoregon.edu

Links: Shih-Yuan Liu's faculty page: http://www.uoregon.edu/~chem/liu.html; CAMCOR Web site: http://materialscience.uoregon.edu/Outreach/CAMCOR/About.html; College of Arts and Sciences: http://cas.uoregon.edu/

Jim Barlow | newswise
Further information:
http://www.uoregon.edu/~chem/liu.html

Further reports about: Benzene Liu

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>