Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover DNA Knot Keeps Viral Genes Tightly Corked Inside Shell

19.06.2008
A novel twist of DNA may keep viral genes tightly wound within a capsule, waiting for ejection into a host, a high-resolution analysis of its structure has revealed.

Using electron microscopy and three-dimensional computer reconstruction, UC San Diego biologists and chemists have produced the most detailed image yet of the protein envelope of an asymmetrical virus and the viral DNA packed within, they report this week in the journal Structure. The image, with a resolution of less than a nanometer, or a millionth of a millimeter, will help to unravel how the virus locks onto its host and infects the cells by injecting its DNA.

By assembling more than 12,000 microscopic views of frozen viral particles from different angles, UCSD chemists Jinghua Tang, Norman Olson and Timothy Baker, a professor of chemistry and biological sciences, have determined the structure of a bacteriophage called phi29 with a resolution finer than 8 Angstroms (one Angstrom equals a tenth of a nanometer). Their project was part of a long-term collaboration with molecular virologist Dwight Anderson and his colleagues at the University of Minnesota.

Although the structures of spherical viruses with a high degree of symmetry have been resolved using similar methods, many more images were required to accomplish the same task for the head-and-tail shape of phi29. The UCSD scientists said their images of phi29 are twice as fine as those created in previous efforts to visualize viruses with a similar shape.

... more about:
»DNA »structure

A comparison between images of the virus with and without its DNA cargo revealed that the DNA twists tightly into a donut shape, or toroid, in the neck of the virus between its head and tail. “This highly distorted DNA structure is unlike anything previously seen or even predicted in a virus,” said Timothy Baker who headed the research team. “It’s an improbably tight turn for DNA, which is generally considered inflexible over very small distances.”

During assembly of the virus, a molecular motor in the neck winds the DNA strand into a tight coil within the head. “It’s under tremendous pressure -- about 20 times that of champagne in a bottle,” said Tang, the lead author of the paper.

The knot-like shape of the toroid, along with interlocking bumps in the protein envelope, may keep the DNA wedged into the capsid until the virus docks onto the host cell.

"It's poised in this tube waiting to go through the bacterial wall," Baker said. "All of the components work together to create an infection machine."

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: DNA structure

More articles from Life Sciences:

nachricht Cancer cachexia: Extracellular ligand helps to prevent muscle loss
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht The genetic secret of night vision
25.02.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>