Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI researchers discover new cellular mechanism that will significantly advance vaccine development

19.06.2008
Discovery rewrites current scientific understanding of how the body responds to viruses

La Jolla Institute for Allergy & Immunology (LIAI) scientists have discovered one for the textbooks. Their finding, reported Friday in the scientific journal Immunity, illuminates a new, previously unknown mechanism in how the body fights a virus. The finding runs counter to traditional scientific understanding of this process and will provide scientists a more effective method for developing vaccines.

"Our research grew from the question, "why do you get good antibody responses to some parts of (virus) pathogens and poor responses to other parts?" said LIAI scientist Shane Crotty, Ph.D., the lead researcher on the paper, "Selective CD4 T cell help for antibody responses to a large viral pathogen: deterministic linkage of specificities." Alessandro Sette, Ph.D., a renowned vaccine expert and director of the LIAI Center for Infectious Disease, also was a key contributor on the study. Dr. Crotty said the team studied the smallpox vaccine, considered the "gold standard" of vaccines, and found some startling answers.

"We expected one thing based on textbook knowledge and that didn't happen at all," he said. It was known previously that getting a good antibody response requires two different cells of the immune system -- B cells and CD4 T cells, both soldiers in the immune system's defensive army. Antibody responses are important because they help the body fight off viruses and they also are key to vaccine development. Surprisingly, however, Dr. Crotty said the researchers found that B cells and CD4 T cells recognize the same piece of the virus.

... more about:
»Antibody »B cells »CD4 »Crotty »LIAI »T cells »Vaccine

"Previously, it was thought that the CD4 T cell could react to any part of the virus, but now we realize it must be specific to the same part as the B cell," he explained. "When you have a hundred different parts, this knowledge makes a big difference. It narrows down the search for the right antigens tremendously."

Scientists use knowledge of which antigens (virus pieces) trigger an antibody attack to develop vaccines. Vaccines work by exposing the individual to a milder form of a particular virus, so that the body makes antibodies to fight off the virus. Consequently, if the individual is later exposed to the actual virus, the body already has an army of antibodies built up that can fight off this stronger viral attack before it can overtake the body and cause sickness.

With the knowledge gained from the LIAI study, scientists will now be able to more easily figure out the most important viral pieces to focus on in developing a vaccine. "The fact that it requires two components to fight the (virus) pathogen is important to understand," Dr. Crotty said. "So now when we find out which viral pieces are producing a strong response from the B cells, we can cross check that against the viral pieces eliciting a good response from the CD4 T cells. The point at which these virus pieces cross - in other words where the same piece is eliciting a response from both the B cells and CD4 T cells - then we know we have found our best candidate for creating a vaccine."

About LIAI
Founded in 1988, the La Jolla Institute for Allergy & Immunology is a nonprofit medical research center dedicated to increasing knowledge and improving human health through studies of the immune system. Scientists at the institute carry out research searching for cures for cancer, allergy and asthma, infectious diseases, and autoimmune diseases such as diabetes, inflammatory bowel disease and arthritis. LIAI's research staff includes more than 100 Ph.Ds.

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org/pages/news-releases-6-16-2008

Further reports about: Antibody B cells CD4 Crotty LIAI T cells Vaccine

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>